Skip to main content

Advertisement

Log in

Fate and impact of maghemite (γ-Fe2O3) and magnetite (Fe3O4) nanoparticles in barley (Hordeum vulgare L.)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The increasing demand for food in the world has made sustainable agriculture practices even more important. Nanotechnology applications in many areas have also been used in sustainable agriculture in recent years for the purposes to improve plant yield, pest control, etc. However, ecotoxicology and environmental safety of nanoparticles must be evaluated before large-scale applications. This study comparatively explores the efficacy and fate of different iron oxide NPs (γ-Fe2O3-maghemite and Fe3O4-magnetite) on barley (Hordeum vulgare L.). Various NP doses (50, 100, and 200 mg/L) were applied to the seeds in hydroponic medium for 3 weeks. Results revealed that γ-Fe2O3 and Fe3O4 NPs significantly improved the germination rate (~37% for γ-Fe2O3; ~63% for Fe3O4), plant biomass, and pigmentation (P < 0.005). Compared to the control, the iron content of tissues gradually raised by the increasing NPs doses revealing their translocation, which is confirmed by VSM analysis as well. The findings suggest that γ-Fe2O3 and Fe3O4 NPs have great potential to improve barley growth. They can be recommended for breeding programs as nanofertilizers. However, special care should be paid before the application due to their unknown effects on other living beings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Adjel F, Bouzerzour H, Benmahammed A (2013) Salt stress effects on seed germination and seedling growth of barley (Hordeum Vulgare L.) genotypes. J Agric Sustain 3(2)

  • Ajouri A, Asgedom H, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167(5):630–636

    Article  Google Scholar 

  • Al-Amri N, Tombuloglu H, Slimani Y, Akhtar S, Barghouthi M, Almessiere M et al (2020) Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). Ecotoxicol Environ Saf 194:110377

    Article  CAS  Google Scholar 

  • Avval ZM, Malekpour L, Raeisi F, Babapoor A, Mousavi SM, Hashemi SA, Salari M (2020) Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab Rev 52(1):157–184

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254

    Article  CAS  Google Scholar 

  • Cannata MG, Bertoli AC, Carvalho R, Bastos ARR, Freitas MP, Augusto AS (2014) Effects of cadmium on the content, accumulation, and translocation of nutrients in bean plant cultivated in nutritive solution. Commun Soil Sci Plant Anal 45(2):223–235

    Article  CAS  Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5(2):851–873

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons

    Book  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:380–400

  • Demangeat E, Pédrot M, Dia A, Bouhnik-Le-Coz M, Roperch P, Compaoré G, Cabello-Hurtado F (2021) Investigating the remediation potential of iron oxide nanoparticles in Cu-polluted soil–plant systems: coupled geochemical, geophysical and biological approaches. Nanoscale Adv 3(7):2017–2029

    Article  CAS  Google Scholar 

  • Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW et al (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5(127):105003–105037

    Article  CAS  Google Scholar 

  • Dhawan A, Sanker R, Das M, Gupta KC (2011) Guidance for safe handling of nanomaterials. J Biomed Nanotechnol 7:218–224

    Article  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  CAS  Google Scholar 

  • Fatima F, Hashim A, Anees S (2021) Efficacy of nanoparticles as nanofertilizer production: a review. Environ Sci Pollut Res 28:1292–1303

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47(18):10645–10652

    CAS  Google Scholar 

  • Govea-Alcaide E, Masunaga SH, De Souza A, Fajardo-Rosabal L, Effenberger FB, Rossi LM, Jardim RF (2016) Tracking iron oxide nanoparticles in plant organs using magnetic measurements. J Nanopart Res 18:305

    Article  Google Scholar 

  • Hazeem LJ, Waheed FA, Rashdan S, Bououdina M, Brunet L, Slomianny C, Boukherroub R, Elmeselmani WA (2015) Effect of magnetic iron oxide (Fe 3 O 4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp. Environ Sci Pollut Res 22(15):11728–11739

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347(2nd edit)

  • Hu J, Wu X, Wu F, Chen W, White JC, Yang Y et al (2020) Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). J Hazard Mater 389:121837

    Article  CAS  Google Scholar 

  • ISTA (2017) International rules for seed testing Bassersdorf: International Seed Testing Association, 296

  • Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29(29):4012–4021

    Article  CAS  Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58(2):297–317

    Article  CAS  Google Scholar 

  • Jeyasubramanian K, Thoppey UUG, Hikku GS, Selvakumar N, Subramania A, Krishnamoorthy K (2016) Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Adv 6(19):15451–15459

    Article  CAS  Google Scholar 

  • Li P, Wang A, Du W, Mao L, Wei Z, Wang S et al (2020) Insight into the interaction between Fe-based nanomaterials and maize (Zea mays) plants at metabolic level. Sci Total Environ 738:139795

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6(1):41–59

    Article  CAS  Google Scholar 

  • Malhotra N, Lee JS, Liman RAD, Ruallo JMS, Villaflores OB, Ger TR, Hsiao CD (2020) Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules 25(14):3159

    Article  CAS  Google Scholar 

  • Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A, Cadenas-Pliego G, González-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol 8(1):013001

    Article  Google Scholar 

  • Ort D, Whitmarsh J (2001) Photosynthesis. Encyclopedia of Life Sciences. Macmillan, London

    Google Scholar 

  • Racuciu M, Creanga DE (2007) TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Romanian J Phys 52(3/4):395

    CAS  Google Scholar 

  • Rana MS, Bhushan S, Prajapati SK (2020) New insights on improved growth and biogas production potential of Chlorella pyrenoidosa through intermittent iron oxide nanoparticle supplementation. Sci Rep 10(1):1–13

    Article  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X et al (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Article  Google Scholar 

  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2016) Fe 2 O 3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6(7):983–990

    Article  CAS  Google Scholar 

  • Swift TA, Oliver TA, Galan MC, Whitney HM (2019) Functional nanomaterials to augment photosynthesis: evidence and considerations for their responsible use in agricultural applications. J Royal Soc Interface Foc 9(1):20180048

    Article  Google Scholar 

  • Tombuloglu H, Yassine S, Güngüneş H, Tombuloglu G, Almessiere MA, Sozeri H, Baykal A, Ercan I (2019b) Tracking of SPIONs in barley (Hordeum vulgare L.) Plant Organs During its Growth. J Supercond Nov Magn 32:3285–3294

    Article  CAS  Google Scholar 

  • Tombuloglu H, Ercan I, Alshammari T, Tombuloglu G, Slimani Y, Almessiere M, Baykal A (2020b) Incorporation of micronutrients (nickel, copper, zinc, and iron) into plant body through nanoparticles. J Soil Sci Plant Nutr 20:1872–1881

  • Tombuloglu H, Slimani Y, Alshammari T, Tombuloglu G, Almessiere M, Baykal A, Ercan I, Ozcelik S, Demirci T (2020c) Magnetic behavior and nutrient content analyses of barley (Hordeum vulgare L.) tissues upon CoNd0.2Fe1.8O4 magnetic nanoparticle treatment. J Soil Sci Plant Nutr 20:357–366

    Article  CAS  Google Scholar 

  • Tombuloglu H, Slimani Y, AlShammari TM, Bargouti M, Ozdemir M, Tombuloglu G et al (2020a) Uptake, translocation, and physiological effects of hematite (α-Fe2O3) nanoparticles in barley (Hordeum vulgare L.). Environ Pollut 266:115391

    Article  CAS  Google Scholar 

  • Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A, Ercan I, Sozeri H (2019c) Tracking of NiFe2O4 nanoparticles in barley (Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity, and mineral uptake. Environ Nanotechnol Monit Manag 11:100223

    Google Scholar 

  • Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Sozeri H, Demir-Korkmaz A et al (2019a) Impact of calcium and magnesium substituted strontium nano-hexaferrite on mineral uptake, magnetic character, and physiology of barley (Hordeum vulgare L.). Ecotoxicol Environ Saf 186:109751

    Article  CAS  Google Scholar 

  • Tombuloglu H, Slimani Y, Tombuloglu G, Alshammari T, Almessiere M, Korkmaz AD, Baykal A, Samia ACS (2020d) Engineered magnetic nanoparticles enhance chlorophyll content and growth of barley through the induction of photosystem genes. Environ Sci Pollut Res 27(27):34311–34321

    Article  CAS  Google Scholar 

  • Tombuloglu H, Slimani Y, Tombuloglu G, Korkmaz AD, Baykal A, Almessiere M, Ercan I (2019d) Impact of superparamagnetic iron oxide nanoparticles (SPIONs) and ionic iron on physiology of summer squash (Cucurbita pepo): a comparative study. Plant Physiol Biochem 139:56–65

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1996) Ecological effects test Guidelines: Seed Germination/root elongation toxicity test. Prevention, Pesticides and Toxic Substances (7101), Washington, DC

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016a) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712

    Article  CAS  Google Scholar 

  • Wang Y, Hu J, Dai Z, Li J, Huang J (2016b) In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiol Biochem 108:353–360

    Article  CAS  Google Scholar 

  • Wang Y, Wang S, Xu M, Xiao L, Dai Z, Li J (2019) The impacts of γ-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environ Pollut 249:1011–1018

    Article  CAS  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415

    Article  CAS  Google Scholar 

  • Xu YL, Qin Y, Palchoudhury S, Bao YP (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997

    Article  CAS  Google Scholar 

  • Yuan J, Chen Y, Li H, Lu J, Zhao H, Liu M et al (2018) New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep 8(1):1–9

  • Zhang Z, Ke M, Qu Q, Peijnenburg WJGM, Lu T, Zhang Q, Ye Y, Xu P, du B, Sun L, Qian H (2018) Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut 239:689–697

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  Google Scholar 

Download references

Funding

The study is supported by the Deanship of Scientific Research (DSR) fund of Imam Abdulrahman Bin Faisal University (IAU). The project no: 2019-058-IRMC and 2020-166-IRMC.

Author information

Authors and Affiliations

Authors

Contributions

HT and GT designed the study. YS performed magnetic measurements. IE analyzed the iron content of the plant parts. AB and MA characterized the nanoparticles. NA and HT conducted physiological tests. SEM analysis was performed by SA. HS and HT performed confocal microscopy analyses. HT, GT, and AM wrote the manuscript. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Huseyin Tombuloglu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Gangrong ShiGangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tombuloglu, H., Albenayyan, N., Slimani, Y. et al. Fate and impact of maghemite (γ-Fe2O3) and magnetite (Fe3O4) nanoparticles in barley (Hordeum vulgare L.). Environ Sci Pollut Res 29, 4710–4721 (2022). https://doi.org/10.1007/s11356-021-15965-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15965-1

Keywords

Navigation