Skip to main content
Log in

Interrelationship of Indoor Particulate Matter and Respiratory Dust Depositions of Women in the Residence of Dhanbad City, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Women spend relatively more time in indoor environments in developing countries. Exposure to various indoor air pollutants leads them to higher health risks according to household air quality in which they reside. Particulate matter (PM) exposure with their exposure duration inside the household plays a significant role in women’s respiratory problems. This study measured size-segregated particulate matter concentrations in 63 residences at different locations. Respiratory dust depositions (RDDs) for 118 women in their different respiratory regions like head airway (HD), tracheobronchial (TB), and alveolar (AL) regions for the three PM size fractions (PM10, PM2.5, and PM1) were investigated. For different positions like light exercise and the sitting condition, RDDs values found for AL region were 0.091 μgmin−1 (SD: 0.067, 0.012–0.408) and 0.028 μgmin−1 (SD: 0.021, 0.003–0.126) for PM10, 0.325 μgmin−1 (SD: 0.254, 0.053–1.521) and 0.183 μgmin−1 (SD: 0.143, 0.031–0.857) for PM2.5, 0.257 μgmin−1 (SD: 0.197, 0.043–1.04) and 0.057 μgmin−1 (SD: 0.044, 0.009–0.233) respectively for PM1 to females. RDDs values in the AL region significantly increase as PM10 (11%), PM2.5 (68%), and PM1 (21%), confirming that for women, the AL region is the most prominent affected zone by fine particles (PM2.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Supplementary data is attached to this manuscript. The data presented in this study are also available on request from the corresponding authors.

References

  • Abareshi F, Sharifi Z, Hekmatshoar R, Fallahi M, Lari Najafi M, Ahmadi Asour A, Mortazavi F, Akrami R, Miri M, Dadvand P (2020) Association of exposure to air pollution and green space with ovarian reserve hormones levels. Environ Res 184:109342. https://doi.org/10.1016/j.envres.2020.109342

    Article  CAS  Google Scholar 

  • Adesina JA, Piketh SJ, Qhekwana M, Burger R, Language B, Mkhatshwa G (2020) Contrasting indoor and ambient particulate matter concentrations and thermal comfort in coal and non-coal burning households at South Africa Highveld. Sci Total Environ 699:134403. https://doi.org/10.1016/j.scitotenv.2019.134403

  • Alim MA, Sarker MAB, Selim S, Karim MR, Yoshida Y, Hamajima N (2014) Respiratory involvements among women exposed to the smoke of traditional biomass fuel and gas fuel in a district of Bangladesh. Environ Health Prev Med 19:126–134. https://doi.org/10.1007/s12199-013-0364-4

    Article  CAS  Google Scholar 

  • Anand A, Phuleria HC (2021) Modeling indoor exposure to PM2.5 and black carbon in densely populated urban slums. Build Environ 200:107940. https://doi.org/10.1016/j.buildenv.2021.107940

    Article  Google Scholar 

  • Arbex MA, Santos U d P, Martins LC et al (2012) A poluição do ar e o sistema respiratório. J Bras Pneumol 38:643–655. https://doi.org/10.1590/S1806-37132012000500015

    Article  Google Scholar 

  • Avila-Tang E, Elf JL, Cummings KM, Fong GT, Hovell MF, Klein JD, McMillen R, Winickoff JP, Samet JM (2013) Assessing secondhand smoke exposure with reported measures. Tob Control 22:156–163. https://doi.org/10.1136/tobaccocontrol-2011-050296

    Article  Google Scholar 

  • Azarmi F, Kumar P (2016) Ambient exposure to coarse and fine particle emissions from building demolition. Atmos Environ 137:62–79. https://doi.org/10.1016/j.atmosenv.2016.04.029

    Article  CAS  Google Scholar 

  • Azuma K, Jinno H, Tanaka-Kagawa T, Sakai S (2020) Risk assessment concepts and approaches for indoor air chemicals in Japan. Int J Hyg Environ Health 225:113470. https://doi.org/10.1016/j.ijheh.2020.113470

    Article  CAS  Google Scholar 

  • Bai L, He Z, Li C, Chen Z (2020) Investigation of yearly indoor/outdoor PM2.5 levels in the perspectives of health impacts and air pollution control: case study in Changchun, in the northeast of China. Sustain Cities Soc 53:101871. https://doi.org/10.1016/j.scs.2019.101871

  • Balakrishnan K, Ghosh S, Ganguli B, Sambandam S, Bruce N, Barnes DF, Smith KR (2013) State and national household concentrations of PM2.5 from solid cookfuel use: results from measurements and modeling in India for estimation of the global burden of disease. Environ Heal A Glob Access Sci Source 12:1–14. https://doi.org/10.1186/1476-069X-12-77

    Article  CAS  Google Scholar 

  • Barnes B, Mathee A, Thomas E (2011) The impact of health behaviour change intervention on indoor air pollution indicators in the rural North West Province, South Africa. J Energy South Africa 22:35–44. https://doi.org/10.17159/2413-3051/2011/v22i3a3220

    Article  Google Scholar 

  • Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, Wolf K, Samoli E, Fischer P, Nieuwenhuijsen M, Vineis P, Xun WW, Katsouyanni K, Dimakopoulou K, Oudin A, Forsberg B, Modig L, Havulinna AS, Lanki T, Turunen A, Oftedal B, Nystad W, Nafstad P, de Faire U, Pedersen NL, Östenson CG, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen KT, Overvad K, Ellermann T, Eeftens M, Peeters PH, Meliefste K, Wang M, Bueno-de-Mesquita B, Sugiri D, Krämer U, Heinrich J, de Hoogh K, Key T, Peters A, Hampel R, Concin H, Nagel G, Ineichen A, Schaffner E, Probst-Hensch N, Künzli N, Schindler C, Schikowski T, Adam M, Phuleria H, Vilier A, Clavel-Chapelon F, Declercq C, Grioni S, Krogh V, Tsai MY, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Katsoulis M, Trichopoulou A, Brunekreef B, Hoek G (2014) Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 383:785–795. https://doi.org/10.1016/S0140-6736(13)62158-3

    Article  CAS  Google Scholar 

  • Begum BA, Paul SK, Dildar Hossain M, Biswas SK, Hopke PK (2009) Indoor air pollution from particulate matter emissions in different households in rural areas of Bangladesh. Build Environ 44:898–903. https://doi.org/10.1016/j.buildenv.2008.06.005

    Article  Google Scholar 

  • Benka-Coker ML, Peel JL, Volckens J, Good N, Bilsback KR, L’Orange C, Quinn C, Young BN, Rajkumar S, Wilson A, Tryner J, Africano S, Osorto AB, Clark ML (2020) Kitchen concentrations of fine particulate matter and particle number concentration in households using biomass cookstoves in rural Honduras. Environ Pollut 258:113697. https://doi.org/10.1016/j.envpol.2019.113697

    Article  CAS  Google Scholar 

  • Bhole DV (2017) Implications of household air pollution in India on health: need of health technology. Int J Healthc Educ Med Informatics 4:18–22. https://doi.org/10.24321/2455.9199.201702

    Article  Google Scholar 

  • Bird DK (2009) The use of questionnaires for acquiring information on public perception of natural hazards and risk mitigation—a review of current knowledge and practice. Nat Hazards Earth Syst Sci 9:1307–1325. https://doi.org/10.5194/nhess-9-1307-2009

    Article  Google Scholar 

  • Bluyssen PM, Roda C, Mandin C, Fossati S, Carrer P, de Kluizenaar Y, Mihucz VG, de Oliveira Fernandes E, Bartzis J (2016) Self-reported health and comfort in “modern” office buildings: first results from the European OFFICAIR study. Indoor Air 26:298–317. https://doi.org/10.1111/ina.12196

    Article  CAS  Google Scholar 

  • Bungău CC, Prada IF, Prada M, Bungău C (2019) Design and operation of constructions: a healthy living environment-parametric studies and new solutions. Sustain 11. https://doi.org/10.3390/su11236824

  • Burkart J, Steiner G, Reischl G, Moshammer H, Neuberger M, Hitzenberger R (2010) Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions. J Aerosol Sci 41:953–962. https://doi.org/10.1016/j.jaerosci.2010.07.007

    Article  CAS  Google Scholar 

  • Chakraborty D, Mondal NK, Datta JK (2014) Indoor pollution from solid biomass fuel and rural health damage: a micro-environmental study in rural area of Burdwan, West Bengal. Int J Sustain Built Environ 3:262–271. https://doi.org/10.1016/j.ijsbe.2014.11.002

    Article  CAS  Google Scholar 

  • Chao CY, Wong KK (2002) Residential indoor PM10 and PM2.5 in Hong Kong and the elemental composition

  • Chen Y, Shen G, Huang Y, Zhang Y, Han Y, Wang R, Shen H, Su S, Lin N, Zhu D, Pei L, Zheng X, Wu J, Wang X, Liu W, Wong M, Tao S (2016) Household air pollution and personal exposure risk of polycyclic aromatic hydrocarbons among rural residents in Shanxi, China. Indoor Air 26:246–258. https://doi.org/10.1111/ina.12204

    Article  CAS  Google Scholar 

  • Chen CH, Da Wu C, Chiang HC et al (2019) The effects of fine and coarse particulate matter on lung function among the elderly. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-51307-5

    Article  CAS  Google Scholar 

  • Daigle CC, Chalupa DC, Gibb FR et al (2003) In humans during rest and exercise. Children 15:539–552. https://doi.org/10.1080/08958370390205065

    Article  CAS  Google Scholar 

  • Datta A, Suresh R, Gupta A, Singh D, Kulshrestha P (2017) Indoor air quality of non-residential urban buildings in Delhi, India. Int J Sustain Built Environ 6:412–420. https://doi.org/10.1016/j.ijsbe.2017.07.005

    Article  Google Scholar 

  • de la Sota C, Lumbreras J, Pérez N, Ealo M, Kane M, Youm I, Viana M (2018) Indoor air pollution from biomass cookstoves in rural Senegal. Energy Sustain Dev 43:224–234. https://doi.org/10.1016/j.esd.2018.02.002

    Article  Google Scholar 

  • Deepthi Y, Shiva Nagendra SM, Gummadi SN (2019) Characteristics of indoor air pollution and estimation of respiratory dosage under varied fuel-type and kitchen-type in the rural areas of Telangana state in India. Sci Total Environ 650:616–625. https://doi.org/10.1016/j.scitotenv.2018.08.381

  • Diapouli E, Chaloulakou A, Koutrakis P (2013) Estimating the concentration of indoor particles of outdoor origin: a review. J Air Waste Manag Assoc 63:1113–1129. https://doi.org/10.1080/10962247.2013.791649

    Article  CAS  Google Scholar 

  • Dolk H, Armstrong B, Lachowycz K, Vrijheid M, Rankin J, Abramsky L, Boyd PA, Wellesley D (2010) Ambient air pollution and risk of congenital anomalies in England, 1991-1999. Occup Environ Med 67:223–227. https://doi.org/10.1136/oem.2009.045997

    Article  CAS  Google Scholar 

  • Du W, Zhu X, Chen Y et al (2018) Field-based emission measurements of biomass burning in typical Chinese built-in-place stoves. Environ Pollut 242:1587–1597. https://doi.org/10.1016/j.envpol.2018.07.121

    Article  CAS  Google Scholar 

  • Du W, Yun X, Fu N et al (2020) Variation of indoor and outdoor carbonaceous aerosols in rural homes with strong internal solid fuel combustion sources. Atmos Pollut Res 11:992–999. https://doi.org/10.1016/j.apr.2020.02.013

    Article  CAS  Google Scholar 

  • Evans J, van Donkelaar A, Martin RV, Burnett R, Rainham DG, Birkett NJ, Krewski D (2013) Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ Res 120:33–42. https://doi.org/10.1016/j.envres.2012.08.005

    Article  CAS  Google Scholar 

  • Ferro AR, Kopperud RJ, Hildemann LM (2004) Elevated personal exposure to particulate matter from human activities in a residence. J Expo Anal Environ Epidemiol 14:14–S40. https://doi.org/10.1038/sj.jea.7500356

    Article  CAS  Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency) (2019) Guidelines for Human Exposure Assessment. (EPA/100/B-19/001). Risk Assessment Forum, U.S. EPA, Washington, D.C.

  • Giwa SO, Nwaokocha CN, Odufuwa BO (2019) Air pollutants characterization of kitchen microenvironments in southwest Nigeria. Build Environ 153:138–147. https://doi.org/10.1016/j.buildenv.2019.02.038

    Article  Google Scholar 

  • Goyal R, Kumar P (2013) Indoor–outdoor concentrations of particulate matter in nine microenvironments of a mix-use commercial building in megacity Delhi. Air Qual Atmos Heal 6:747–757. https://doi.org/10.1007/s11869-013-0212-0

    Article  CAS  Google Scholar 

  • Grabow K, Still D, Bentson S (2013) Test kitchen studies of indoor air pollution from biomass cookstoves. Energy Sustain Dev 17:458–462. https://doi.org/10.1016/j.esd.2013.05.003

    Article  CAS  Google Scholar 

  • Guo H, Lee SC, Chan LY, Li WM (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94:57–66. https://doi.org/10.1016/S0013-9351(03)00035-5

    Article  CAS  Google Scholar 

  • Gupta SK, Elumalai SP (2017) Size-segregated particulate matter and its association with respiratory deposition doses among outdoor exercisers in Dhanbad City, India. J Air Waste Manag Assoc 67:1137–1145. https://doi.org/10.1080/10962247.2017.1344159

    Article  CAS  Google Scholar 

  • Heal MR, Kumar P, Harrison RM (2012) Particles, air quality, policy and health. Chem Soc Rev 41:6606–6630. https://doi.org/10.1039/C2CS35076A

    Article  CAS  Google Scholar 

  • Hime NJ, Marks GB, Cowie CT (2018) A comparison of the health effects of ambient particulate matter air pollution from five emission sources. Int. J. Environ. Res. Public Health 15

  • Hinds WC (n.d.) Aerosol technology properties, behavior, and measurement of airborne particles Second Edition

  • Human OOF (2019) Human health risk assessment (HHRA) NOTE NUMBER 1. 1–5

  • Hystad P, Villeneuve PJ, Goldberg MS, Crouse DL, Johnson K, Canadian Cancer Registries Epidemiology Research Group (2015) Exposure to traffic-related air pollution and the risk of developing breast cancer among women in eight Canadian provinces: a case-control study. Environ Int 74:240–248. https://doi.org/10.1016/j.envint.2014.09.004

    Article  CAS  Google Scholar 

  • Jain S (2017) Exposure to in-vehicle respirable particulate matter in passenger vehicles under different ventilation conditions and seasons. Sustain Environ Res 27:87–94. https://doi.org/10.1016/j.serj.2016.08.006

    Article  CAS  Google Scholar 

  • Jaques PA, Kim CS (2000) Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women

  • Jena S, Singh G (2017) Human health risk assessment of airborne trace elements in Dhanbad, India. Atmos Pollut Res 8:490–502. https://doi.org/10.1016/j.apr.2016.12.003

    Article  Google Scholar 

  • Jindal SK, Aggarwal AN, Jindal A (2020) Household air pollution in India and respiratory diseases: current status and future directions. Curr Opin Pulm Med 26:128–134. https://doi.org/10.1097/MCP.0000000000000642

    Article  Google Scholar 

  • Kesavachandran CN, Kamal R, Bihari V, Pathak MK, Singh A (2015) Particulate matter in ambient air and its association with alterations in lung functions and respiratory health problems among outdoor exercisers in national capital region, India. Atmos Pollut Res. 6:618–625. https://doi.org/10.5094/APR.2015.070

  • Kumar P, Goel A (2016) Concentration dynamics of coarse and fine particulate matter at and around signalised traffic intersections. Environ Sci Process Impacts 18:1220–1235. https://doi.org/10.1039/c6em00215c

    Article  CAS  Google Scholar 

  • Kumar S, Jain MK (2021) Exposure to particulate matter and CO2 in indoor conditions at IIT(ISM) Dhanbad. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.04.496

  • Kurt-Karakus PB (2012) Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the health risk. Environ Int 50:47–55. https://doi.org/10.1016/j.envint.2012.09.011

    Article  CAS  Google Scholar 

  • Lewis JJ, Hollingsworth JW, Chartier RT, Cooper EM, Foster WM, Gomes GL, Kussin PS, MacInnis JJ, Padhi BK, Panigrahi P, Rodes CE, Ryde IT, Singha AK, Stapleton HM, Thornburg J, Young CJ, Meyer JN, Pattanayak SK (2017) Biogas stoves reduce firewood use, household air pollution, and hospital visits in Odisha, India. Environ Sci Technol 51:560–569. https://doi.org/10.1021/acs.est.6b02466

    Article  CAS  Google Scholar 

  • Li Q, Jiang J, Wang S, Rumchev K, Mead-Hunter R, Morawska L, Hao J (2017) Impacts of household coal and biomass combustion on indoor and ambient air quality in China: current status and implication. Sci Total Environ 576:347–361. https://doi.org/10.1016/j.scitotenv.2016.10.080

    Article  CAS  Google Scholar 

  • Liao J, Ye W, Pillarisetti A, Clasen TF (2019) Modeling the impact of an indoor air filter on air pollution exposure reduction and associated mortality in Urban Delhi household. Int J Environ Res Public Health 16:16. https://doi.org/10.3390/ijerph16081391

    Article  CAS  Google Scholar 

  • Lohani SP (2011) Biomass as a source of household energy and indoor air pollution in Nepal. Iran J Energy Environ 2:74–78

    Google Scholar 

  • Loomis D, Huang W, Chen G (2014) The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chin J Cancer 33:189–196. https://doi.org/10.5732/cjc.014.10028

    Article  CAS  Google Scholar 

  • Majdan M, Svaro M, Bodo J, Taylor M, Muendo RM (2015) Assessment of the biomass related indoor air pollution in Kwale district in Kenya using short term monitoring. Afr Health Sci 15:972–981. https://doi.org/10.4314/ahs.v15i3.35

    Article  Google Scholar 

  • Massey D, Masih J, Kulshrestha A, Habil M, Taneja A (2009) Indoor/outdoor relationship of fine particles less than 2.5 μm (PM2.5) in residential homes locations in central Indian region. Build Environ 44:2037–2045. https://doi.org/10.1016/j.buildenv.2009.02.010

    Article  Google Scholar 

  • Massey DD, Kulshrestha A, Taneja A (2013) Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmos Environ 67:278–286. https://doi.org/10.1016/j.atmosenv.2012.11.002

    Article  CAS  Google Scholar 

  • Mehta AJ, Zanobetti A, Bind MAC, Kloog I, Koutrakis P, Sparrow D, Vokonas PS, Schwartz JD (2016) Long-term exposure to ambient fine particulate matter and renal function in older men: the veterans administration normative aging study. Environ Health Perspect 124:1353–1360. https://doi.org/10.1289/ehp.1510269

    Article  CAS  Google Scholar 

  • Mishra V (2003) Indoor air pollution from biomass combustion and acute respiratory illness in preschool age children in Zimbabwe. Int J Epidemiol 32:847–853. https://doi.org/10.1093/ije/dyg240

    Article  Google Scholar 

  • Mönkkönen P, Pai P, Maynard A et al (2005) Fine particle number and mass concentration measurements in urban Indian households. Sci Total Environ 347:131–147. https://doi.org/10.1016/j.scitotenv.2004.12.023

    Article  CAS  Google Scholar 

  • Morawska L, Afshari A, Bae GN, Buonanno G, Chao CYH, Hänninen O, Hofmann W, Isaxon C, Jayaratne ER, Pasanen P, Salthammer T, Waring M, Wierzbicka A (2013) Indoor aerosols: from personal exposure to risk assessment. Indoor Air 23:462–487. https://doi.org/10.1111/ina.12044

    Article  CAS  Google Scholar 

  • Morris et al (2012) (2012) 基因的改变NIH Public Access. Bone 23:1–7. https://doi.org/10.1038/jid.2014.371

    Article  CAS  Google Scholar 

  • Muralidharan V, Sussan TE, Limaye S, Koehler K, Williams D'A, Rule A, Juvekar S, Breysse P, Salvi S, Biswal S (2015) Field testing of alternative cookstove performance in a rural setting of Western India. Int J Environ Res Public Health 12:1773–1787. https://doi.org/10.3390/ijerph120201773

    Article  CAS  Google Scholar 

  • Nayek S, Padhy PK (2018) Approximation of personal exposure to fine particulate matters (PM2.5) during cooking using solid biomass fuels in the kitchens of rural West Bengal, India. Environ Sci Pollut Res 25:15925–15933. https://doi.org/10.1007/s11356-018-1831-7

    Article  CAS  Google Scholar 

  • Norbäck D, Lu C, Zhang Y, Li B, Zhao Z, Huang C, Zhang X, Qian H, Sun Y, Wang J, Liu W, Sundell J, Deng Q (2019) Sources of indoor particulate matter (PM) and outdoor air pollution in China in relation to asthma, wheeze, rhinitis and eczema among pre-school children: synergistic effects between antibiotics use and PM10 and second hand smoke. Environ Int 125:252–260. https://doi.org/10.1016/j.envint.2019.01.036

    Article  CAS  Google Scholar 

  • O’Lenick CR, Wilhelmi OV, Michael R et al (2019) Urban heat and air pollution: a framework for integrating population vulnerability and indoor exposure in health risk analyses. Sci Total Environ 660:715–723. https://doi.org/10.1016/j.scitotenv.2019.01.002

    Article  CAS  Google Scholar 

  • Ojo KD, Soneja SI, Scrafford CG, Khatry S, LeClerq S, Checkley W, Katz J, Breysse P, Tielsch J (2015) Indoor particulate matter concentration, water boiling time, and fuel use of selected alternative cookstoves in a home-like setting in rural Nepal. Int J Environ Res Public Health 12:7558–7581. https://doi.org/10.3390/ijerph120707558

    Article  CAS  Google Scholar 

  • Olmo NRS, Saldiva PH d N, Braga ALF et al (2011) A review of low-level air pollution and adverse effects on human health: implications for epidemiological studies and public policy. Clinics 66:681–690. https://doi.org/10.1590/S1807-59322011000400025

    Article  Google Scholar 

  • Padhi BK, Adhikari A, Satapathy P, Patra AK, Chandel D, Panigrahi P (2017) Predictors and respiratory depositions of airborne endotoxin in homes using biomass fuels and LPG gas for cooking. J Expo Sci Environ Epidemiol 27:112–117. https://doi.org/10.1038/jes.2016.5

    Article  CAS  Google Scholar 

  • Pandey VL, Chaubal A (2011) Comprehending household cooking energy choice in rural India. Biomass Bioenergy - BIOMASS BIOENERG 35:4724–4731. https://doi.org/10.1016/j.biombioe.2011.09.020

    Article  Google Scholar 

  • Pang Y, Zhang B, Xing D, Shang J, Chen F, Kang H, Chu C, Li B, Wang J, Zhou L, Su X, Han B, Ning J, Li P, Ma S, Su D, Zhang R, Niu Y (2019) Increased risk of carotid atherosclerosis for long-term exposure to indoor coal-burning pollution in rural area, Hebei Province, China. Environ Pollut 255:113320. https://doi.org/10.1016/j.envpol.2019.113320

    Article  CAS  Google Scholar 

  • Pant P, Guttikunda SK, Peltier RE (2016) Exposure to particulate matter in India: a synthesis of findings and future directions. Environ Res 147:480–496. https://doi.org/10.1016/j.envres.2016.03.011

  • Pathak U, Gupta NC, Suri JC (2020) Risk of COPD due to indoor air pollution from biomass cooking fuel: a systematic review and meta-analysis. Int J Environ Health Res 30:75–88. https://doi.org/10.1080/09603123.2019.1575951

    Article  Google Scholar 

  • Paulin L, Hansel N (2016) Particulate air pollution and impaired lung function. F1000Research 5:1–9. https://doi.org/10.12688/f1000research.7108.1

    Article  Google Scholar 

  • Raysoni AU, Stock TH, Sarnat JA, Montoya Sosa T, Ebelt Sarnat S, Holguin F, Greenwald R, Johnson B, Li WW (2013) Characterization of traffic-related air pollutant metrics at four schools in El Paso, Texas, USA: implications for exposure assessment and siting schools in urban areas. Atmos Environ 80:140–151. https://doi.org/10.1016/j.atmosenv.2013.07.056

    Article  CAS  Google Scholar 

  • Rohra H, Tiwari R, Khandelwal N, Taneja A (2018) Mass distribution and health risk assessment of size segregated particulate in varied indoor microenvironments of Agra, India—a case study. Urban Clim 24:139–152. https://doi.org/10.1016/j.uclim.2018.01.002

    Article  Google Scholar 

  • Salma I, Füri P, Németh Z, Balásházy I, Hofmann W, Farkas Á (2015) Lung burden and deposition distribution of inhaled atmospheric urban ultrafine particles as the first step in their health risk assessment. Atmos Environ 104:39–49. https://doi.org/10.1016/j.atmosenv.2014.12.060

    Article  CAS  Google Scholar 

  • Sánchez-Soberón F, Mari M, Kumar V et al (2015) An approach to assess the particulate matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract. Environ Res 143:10–18. https://doi.org/10.1016/j.envres.2015.09.008

  • Sarkar A, Bardhan R (2020) Optimal interior design for naturally ventilated low-income housing: a design-route for environmental quality and cooling energy saving. Adv Build Energy Res 14:494–526. https://doi.org/10.1080/17512549.2019.1626764

    Article  Google Scholar 

  • Segalin B, Kumar P, Micadei K, Fornaro A, Gonçalves FLT (2017) Size–segregated particulate matter inside residences of elderly in the Metropolitan Area of São Paulo, Brazil. Atmos Environ 148:139–151. https://doi.org/10.1016/j.atmosenv.2016.10.004

    Article  CAS  Google Scholar 

  • Shao Z, Bi J, Ma Z, Wang J (2017) Seasonal trends of indoor fine particulate matter and its determinants in urban residences in Nanjing, China. Build Environ 125:319–325. https://doi.org/10.1016/j.buildenv.2017.09.002

    Article  Google Scholar 

  • Sharma R, Balasubramanian R (2018) Size-fractionated particulate matter in indoor and outdoor environments during the 2015 haze in Singapore: potential human health risk assessment. Aerosol Air Qual Res 18:904–917. https://doi.org/10.4209/aaqr.2017.11.0515

    Article  Google Scholar 

  • Sharma D, Jain S (2019) Impact of intervention of biomass cookstove technologies and kitchen characteristics on indoor air quality and human exposure in rural settings of India. Environ Int 123:240–255. https://doi.org/10.1016/j.envint.2018.11.059

    Article  CAS  Google Scholar 

  • Sharma D, Jain S (2020) Reduction in black carbon concentration and its exposure in rural settings of Northern India: an intervention analysis. Chemosphere 247:125838. https://doi.org/10.1016/j.chemosphere.2020.125838

    Article  CAS  Google Scholar 

  • Sidhu MK, Ravindra K, Mor S, John S (2017) Household air pollution from various types of rural kitchens and its exposure assessment. Sci Total Environ 586:419–429. https://doi.org/10.1016/j.scitotenv.2017.01.051

    Article  CAS  Google Scholar 

  • Simoni M, Scognamiglio A, Carrozzi L, Baldacci S, Angino A, Pistelli F, Pede FD, Viegi G (2004) Indoor exposures and acute respiratory effects in two general population samples from a rural and an urban area in Italy. J Expo Anal Environ Epidemiol 14(Suppl 1):S144–S152. https://doi.org/10.1038/sj.jea.7500368

    Article  CAS  Google Scholar 

  • Singh S, Tiwari S, Gond DP, Dumka UC, Bisht DS, Tiwari S, Pandithurai G, Sinha A (2015) Intra-seasonal variability of black carbon aerosols over a coal field area at Dhanbad. India. Atmos Res. 161-162:25–35. https://doi.org/10.1016/j.atmosres.2015.03.015

    Article  CAS  Google Scholar 

  • Smith KR, Mehta S (2003) The burden of disease from indoor air pollution in developing countries: comparison of estimates. Int J Hyg Environ Health 206:279–289. https://doi.org/10.1078/1438-4639-00224

    Article  CAS  Google Scholar 

  • Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A, Abdollahpour I, Abdulkader RS, Abebe M, Abebe Z, Abera SF, Abil OZ, Abraha HN, Abrham AR, Abu-Raddad LJ, Abu-Rmeileh NME, Accrombessi MMK, Acharya D, Acharya P, Adamu AA, Adane AA, Adebayo OM, Adedoyin RA, Adekanmbi V, Ademi Z, Adetokunboh OO, Adib MG, Admasie A, Adsuar JC, Afanvi KA, Afarideh M, Agarwal G, Aggarwal A, Aghayan SA, Agrawal A, Agrawal S, Ahmadi A, Ahmadi M, Ahmadieh H, Ahmed MB, Aichour AN, Aichour I, Aichour MTE, Akbari ME, Akinyemiju T, Akseer N, al-Aly Z, al-Eyadhy A, al-Mekhlafi HM, Alahdab F, Alam K, Alam S, Alam T, Alashi A, Alavian SM, Alene KA, Ali K, Ali SM, Alijanzadeh M, Alizadeh-Navaei R, Aljunid SM, Alkerwi A', Alla F, Alsharif U, Altirkawi K, Alvis-Guzman N, Amare AT, Ammar W, Anber NH, Anderson JA, Andrei CL, Androudi S, Animut MD, Anjomshoa M, Ansha MG, Antó JM, Antonio CAT, Anwari P, Appiah LT, Appiah SCY, Arabloo J, Aremu O, Ärnlöv J, Artaman A, Aryal KK, Asayesh H, Ataro Z, Ausloos M, Avokpaho EFGA, Awasthi A, Ayala Quintanilla BP, Ayer R, Ayuk TB, Azzopardi PS, Babazadeh A, Badali H, Badawi A, Balakrishnan K, Bali AG, Ball K, Ballew SH, Banach M, Banoub JAM, Barac A, Barker-Collo SL, Bärnighausen TW, Barrero LH, Basu S, Baune BT, Bazargan-Hejazi S, Bedi N, Beghi E, Behzadifar M, Behzadifar M, Béjot Y, Bekele BB, Bekru ET, Belay E, Belay YA, Bell ML, Bello AK, Bennett DA, Bensenor IM, Bergeron G, Berhane A, Bernabe E, Bernstein RS, Beuran M, Beyranvand T, Bhala N, Bhalla A, Bhattarai S, Bhutta ZA, Biadgo B, Bijani A, Bikbov B, Bilano V, Bililign N, Bin Sayeed MS, Bisanzio D, Biswas T, Bjørge T, Blacker BF, Bleyer A, Borschmann R, Bou-Orm IR, Boufous S, Bourne R, Brady OJ, Brauer M, Brazinova A, Breitborde NJK, Brenner H, Briko AN, Britton G, Brugha T, Buchbinder R, Burnett RT, Busse R, Butt ZA, Cahill LE, Cahuana-Hurtado L, Campos-Nonato IR, Cárdenas R, Carreras G, Carrero JJ, Carvalho F, Castañeda-Orjuela CA, Castillo Rivas J, Castro F, Catalá-López F, Causey K, Cercy KM, Cerin E, Chaiah Y, Chang HY, Chang JC, Chang KL, Charlson FJ, Chattopadhyay A, Chattu VK, Chee ML, Cheng CY, Chew A, Chiang PPC, Chimed-Ochir O, Chin KL, Chitheer A, Choi JYJ, Chowdhury R, Christensen H, Christopher DJ, Chung SC, Cicuttini FM, Cirillo M, Cohen AJ, Collado-Mateo D, Cooper C, Cooper OR, Coresh J, Cornaby L, Cortesi PA, Cortinovis M, Costa M, Cousin E, Criqui MH, Cromwell EA, Cundiff DK, Daba AK, Dachew BA, Dadi AF, Damasceno AAM, Dandona L, Dandona R, Darby SC, Dargan PI, Daryani A, Das Gupta R, Das Neves J, Dasa TT, Dash AP, Davitoiu DV, Davletov K, de la Cruz-Góngora V, de la Hoz FP, de Leo D, de Neve JW, Degenhardt L, Deiparine S, Dellavalle RP, Demoz GT, Denova-Gutiérrez E, Deribe K, Dervenis N, Deshpande A, Des Jarlais DC, Dessie GA, Deveber GA, Dey S, Dharmaratne SD, Dhimal M, Dinberu MT, Ding EL, Diro HD, Djalalinia S, Do HP, Dokova K, Doku DT, Doyle KE, Driscoll TR, Dubey M, Dubljanin E, Duken EE, Duncan BB, Duraes AR, Ebert N, Ebrahimi H, Ebrahimpour S, Edvardsson D, Effiong A, Eggen AE, el Bcheraoui C, el-Khatib Z, Elyazar IR, Enayati A, Endries AY, Er B, Erskine HE, Eskandarieh S, Esteghamati A, Estep K, Fakhim H, Faramarzi M, Fareed M, Farid TA, Farinha CSE, Farioli A, Faro A, Farvid MS, Farzaei MH, Fatima B, Fay KA, Fazaeli AA, Feigin VL, Feigl AB, Fereshtehnejad SM, Fernandes E, Fernandes JC, Ferrara G, Ferrari AJ, Ferreira ML, Filip I, Finger JD, Fischer F, Foigt NA, Foreman KJ, Fukumoto T, Fullman N, Fürst T, Furtado JM, Futran ND, Gall S, Gallus S, Gamkrelidze A, Ganji M, Garcia-Basteiro AL, Gardner WM, Gebre AK, Gebremedhin AT, Gebremichael TG, Gelano TF, Geleijnse JM, Geramo YCD, Gething PW, Gezae KE, Ghadimi R, Ghadiri K, Ghasemi Falavarjani K, Ghasemi-Kasman M, Ghimire M, Ghosh R, Ghoshal AG, Giampaoli S, Gill PS, Gill TK, Gillum RF, Ginawi IA, Giussani G, Gnedovskaya EV, Godwin WW, Goli S, Gómez-Dantés H, Gona PN, Gopalani SV, Goulart AC, Grada A, Grams ME, Grosso G, Gugnani HC, Guo Y, Gupta R, Gupta R, Gupta T, Gutiérrez RA, Gutiérrez-Torres DS, Haagsma JA, Habtewold TD, Hachinski V, Hafezi-Nejad N, Hagos TB, Hailegiyorgis TT, Hailu GB, Haj-Mirzaian A, Haj-Mirzaian A, Hamadeh RR, Hamidi S, Handal AJ, Hankey GJ, Hao Y, Harb HL, Harikrishnan S, Haro JM, Hassankhani H, Hassen HY, Havmoeller R, Hawley CN, Hay SI, Hedayatizadeh-Omran A, Heibati B, Heidari B, Heidari M, Hendrie D, Henok A, Heredia-Pi I, Herteliu C, Heydarpour F, Heydarpour S, Hibstu DT, Higazi TB, Hilawe EH, Hoek HW, Hoffman HJ, Hole MK, Homaie Rad E, Hoogar P, Hosgood HD, Hosseini SM, Hosseinzadeh M, Hostiuc M, Hostiuc S, Hoy DG, Hsairi M, Hsiao T, Hu G, Hu H, Huang JJ, Hussen MA, Huynh CK, Iburg KM, Ikeda N, Ilesanmi OS, Iqbal U, Irvani SSN, Irvine CMS, Islam SMS, Islami F, Jackson MD, Jacobsen KH, Jahangiry L, Jahanmehr N, Jain SK, Jakovljevic M, James SL, Jassal SK, Jayatilleke AU, Jeemon P, Jha RP, Jha V, Ji JS, Jonas JB, Jonnagaddala J, Jorjoran Shushtari Z, Joshi A, Jozwiak JJ, Jürisson M, Kabir Z, Kahsay A, Kalani R, Kanchan T, Kant S, Kar C, Karami M, Karami Matin B, Karch A, Karema C, Karimi N, Karimi SM, Kasaeian A, Kassa DH, Kassa GM, Kassa TD, Kassebaum NJ, Katikireddi SV, Kaul A, Kawakami N, Kazemi Z, Karyani AK, Kefale AT, Keiyoro PN, Kemp GR, Kengne AP, Keren A, Kesavachandran CN, Khader YS, Khafaei B, Khafaie MA, Khajavi A, Khalid N, Khalil IA, Khan G, Khan MS, Khan MA, Khang YH, Khater MM, Khazaei M, Khazaie H, Khoja AT, Khosravi A, Khosravi MH, Kiadaliri AA, Kiirithio DN, Kim CI, Kim D, Kim YE, Kim YJ, Kimokoti RW, Kinfu Y, Kisa A, Kissimova-Skarbek K, Kivimäki M, Knibbs LD, Knudsen AKS, Kochhar S, Kokubo Y, Kolola T, Kopec JA, Kosen S, Koul PA, Koyanagi A, Kravchenko MA, Krishan K, Krohn KJ, Kromhout H, Kuate Defo B, Kucuk Bicer B, Kumar GA, Kumar M, Kuzin I, Kyu HH, Lachat C, Lad DP, Lad SD, Lafranconi A, Lalloo R, Lallukka T, Lami FH, Lang JJ, Lansingh VC, Larson SL, Latifi A, Lazarus JV, Lee PH, Leigh J, Leili M, Leshargie CT, Leung J, Levi M, Lewycka S, Li S, Li Y, Liang J, Liang X, Liao Y, Liben ML, Lim LL, Linn S, Liu S, Lodha R, Logroscino G, Lopez AD, Lorkowski S, Lotufo PA, Lozano R, Lucas TCD, Lunevicius R, Ma S, Macarayan ERK, Machado ÍE, Madotto F, Mai HT, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Malta DC, Mamun AA, Manda AL, Manguerra H, Mansournia MA, Mantovani LG, Maravilla JC, Marcenes W, Marks A, Martin RV, Martins SCO, Martins-Melo FR, März W, Marzan MB, Massenburg BB, Mathur MR, Mathur P, Matsushita K, Maulik PK, Mazidi M, McAlinden C, McGrath JJ, McKee M, Mehrotra R, Mehta KM, Mehta V, Meier T, Mekonnen FA, Melaku YA, Melese A, Melku M, Memiah PTN, Memish ZA, Mendoza W, Mengistu DT, Mensah GA, Mensink GBM, Mereta ST, Meretoja A, Meretoja TJ, Mestrovic T, Mezgebe HB, Miazgowski B, Miazgowski T, Millear AI, Miller TR, Miller-Petrie MK, Mini GK, Mirarefin M, Mirica A, Mirrakhimov EM, Misganaw AT, Mitiku H, Moazen B, Mohajer B, Mohammad KA, Mohammadi M, Mohammadifard N, Mohammadnia-Afrouzi M, Mohammed S, Mohebi F, Mokdad AH, Molokhia M, Momeniha F, Monasta L, Moodley Y, Moradi G, Moradi-Lakeh M, Moradinazar M, Moraga P, Morawska L, Morgado-da-Costa J, Morrison SD, Moschos MM, Mouodi S, Mousavi SM, Mozaffarian D, Mruts KB, Muche AA, Muchie KF, Mueller UO, Muhammed OS, Mukhopadhyay S, Muller K, Musa KI, Mustafa G, Nabhan AF, Naghavi M, Naheed A, Nahvijou A, Naik G, Naik N, Najafi F, Nangia V, Nansseu JR, Nascimento BR, Neal B, Neamati N, Negoi I, Negoi RI, Neupane S, Newton CRJ, Ngunjiri JW, Nguyen AQ, Nguyen G, Nguyen HT, Nguyen HLT, Nguyen HT, Nguyen M, Nguyen NB, Nichols E, Nie J, Ningrum DNA, Nirayo YL, Nishi N, Nixon MR, Nojomi M, Nomura S, Norheim OF, Noroozi M, Norrving B, Noubiap JJ, Nouri HR, Nourollahpour Shiadeh M, Nowroozi MR, Nsoesie EO, Nyasulu PS, Obermeyer CM, Odell CM, Ofori-Asenso R, Ogbo FA, Oh IH, Oladimeji O, Olagunju AT, Olagunju TO, Olivares PR, Olsen HE, Olusanya BO, Olusanya JO, Ong KL, Ong SK, Oren E, Orpana HM, Ortiz A, Ota E, Otstavnov SS, Øverland S, Owolabi MO, P A M, Pacella R, Pakhare AP, Pakpour AH, Pana A, Panda-Jonas S, Park EK, Parry CDH, Parsian H, Patel S, Pati S, Patil ST, Patle A, Patton GC, Paudel D, Paulson KR, Paz Ballesteros WC, Pearce N, Pereira A, Pereira DM, Perico N, Pesudovs K, Petzold M, Pham HQ, Phillips MR, Pillay JD, Piradov MA, Pirsaheb M, Pischon T, Pishgar F, Plana-Ripoll O, Plass D, Polinder S, Polkinghorne KR, Postma MJ, Poulton R, Pourshams A, Poustchi H, Prabhakaran D, Prakash S, Prasad N, Purcell CA, Purwar MB, Qorbani M, Radfar A, Rafay A, Rafiei A, Rahim F, Rahimi Z, Rahimi-Movaghar A, Rahimi-Movaghar V, Rahman M, Rahman MH, Rahman MA, Rai RK, Rajati F, Rajsic S, Raju SB, Ram U, Ranabhat CL, Ranjan P, Rath GK, Rawaf DL, Rawaf S, Reddy KS, Rehm CD, Rehm J, Reiner RC Jr, Reitsma MB, Remuzzi G, Renzaho AMN, Resnikoff S, Reynales-Shigematsu LM, Rezaei S, Ribeiro ALP, Rivera JA, Roba KT, Rodríguez-Ramírez S, Roever L, Román Y, Ronfani L, Roshandel G, Rostami A, Roth GA, Rothenbacher D, Roy A, Rubagotti E, Rushton L, Sabanayagam C, Sachdev PS, Saddik B, Sadeghi E, Saeedi Moghaddam S, Safari H, Safari Y, Safari-Faramani R, Safdarian M, Safi S, Safiri S, Sagar R, Sahebkar A, Sahraian MA, Sajadi HS, Salam N, Salamati P, Saleem Z, Salimi Y, Salimzadeh H, Salomon JA, Salvi DD, Salz I, Samy AM, Sanabria J, Sanchez-Niño MD, Sánchez-Pimienta TG, Sanders T, Sang Y, Santomauro DF, Santos IS, Santos JV, Santric Milicevic MM, Sao Jose BP, Sardana M, Sarker AR, Sarmiento-Suárez R, Sarrafzadegan N, Sartorius B, Sarvi S, Sathian B, Satpathy M, Sawant AR, Sawhney M, Saylan M, Sayyah M, Schaeffner E, Schmidt MI, Schneider IJC, Schöttker B, Schutte AE, Schwebel DC, Schwendicke F, Scott JG, Seedat S, Sekerija M, Sepanlou SG, Serre ML, Serván-Mori E, Seyedmousavi S, Shabaninejad H, Shaddick G, Shafieesabet A, Shahbazi M, Shaheen AA, Shaikh MA, Shamah Levy T, Shams-Beyranvand M, Shamsi M, Sharafi H, Sharafi K, Sharif M, Sharif-Alhoseini M, Sharifi H, Sharma J, Sharma M, Sharma R, She J, Sheikh A, Shi P, Shibuya K, Shiferaw MS, Shigematsu M, Shin MJ, Shiri R, Shirkoohi R, Shiue I, Shokraneh F, Shoman H, Shrime MG, Shupler MS, Si S, Siabani S, Sibai AM, Siddiqi TJ, Sigfusdottir ID, Sigurvinsdottir R, Silva DAS, Silva JP, Silveira DGA, Singh JA, Singh NP, Singh V, Sinha DN, Skiadaresi E, Skirbekk V, Smith DL, Smith M, Sobaih BH, Sobhani S, Somayaji R, Soofi M, Sorensen RJD, Soriano JB, Soyiri IN, Spinelli A, Sposato LA, Sreeramareddy CT, Srinivasan V, Starodubov VI, Steckling N, Stein DJ, Stein MB, Stevanovic G, Stockfelt L, Stokes MA, Sturua L, Subart ML, Sudaryanto A, Sufiyan M'B, Sulo G, Sunguya BF, Sur PJ, Sykes BL, Szoeke CEI, Tabarés-Seisdedos R, Tabuchi T, Tadakamadla SK, Takahashi K, Tandon N, Tassew SG, Tavakkoli M, Taveira N, Tehrani-Banihashemi A, Tekalign TG, Tekelemedhin SW, Tekle MG, Temesgen H, Temsah MH, Temsah O, Terkawi AS, Tessema B, Teweldemedhin M, Thankappan KR, Theis A, Thirunavukkarasu S, Thomas HJ, Thomas ML, Thomas N, Thurston GD, Tilahun B, Tillmann T, To QG, Tobollik M, Tonelli M, Topor-Madry R, Torre AE, Tortajada-Girbés M, Touvier M, Tovani-Palone MR, Towbin JA, Tran BX, Tran KB, Truelsen TC, Truong NT, Tsadik AG, Tudor Car L, Tuzcu EM, Tymeson HD, Tyrovolas S, Ukwaja KN, Ullah I, Updike RL, Usman MS, Uthman OA, Vaduganathan M, Vaezi A, Valdez PR, van Donkelaar A, Varavikova E, Varughese S, Vasankari TJ, Venkateswaran V, Venketasubramanian N, Villafaina S, Violante FS, Vladimirov SK, Vlassov V, Vollset SE, Vos T, Vosoughi K, Vu GT, Vujcic IS, Wagnew FS, Waheed Y, Waller SG, Walson JL, Wang Y, Wang Y, Wang YP, Weiderpass E, Weintraub RG, Weldegebreal F, Werdecker A, Werkneh AA, West JJ, Westerman R, Whiteford HA, Widecka J, Wijeratne T, Winkler AS, Wiyeh AB, Wiysonge CS, Wolfe CDA, Wong TY, Wu S, Xavier D, Xu G, Yadgir S, Yadollahpour A, Yahyazadeh Jabbari SH, Yamada T, Yan LL, Yano Y, Yaseri M, Yasin YJ, Yeshaneh A, Yimer EM, Yip P, Yisma E, Yonemoto N, Yoon SJ, Yotebieng M, Younis MZ, Yousefifard M, Yu C, Zaidi Z, Zaman SB, Zamani M, Zavala-Arciniega L, Zhang AL, Zhang H, Zhang K, Zhou M, Zimsen SRM, Zodpey S, Murray CJL (2018) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Stu. Lancet 392:1923–1994. https://doi.org/10.1016/S0140-6736(18)32225-6

    Article  Google Scholar 

  • Taylor J, Shrubsole C, Symonds P, Mackenzie I, Davies M (2019) Application of an indoor air pollution metamodel to a spatially-distributed housing stock. Sci Total Environ 667:390–399. https://doi.org/10.1016/j.scitotenv.2019.02.341

    Article  CAS  Google Scholar 

  • Vardoulakis S, Giagloglou E, Steinle S, Davis A, Sleeuwenhoek A, Galea KS, Dixon K, Crawford JO (2020) Indoor exposure to selected air pollutants in the home environment: a systematic review. Int J Environ Res Public Health 17:1–24. https://doi.org/10.3390/ijerph17238972

    Article  CAS  Google Scholar 

  • Varghese SK, Gangamma S, Patil RS, Sethi V (2005) Particulate respiratory dose to Indian women from domestic cooking. Aerosol Sci Technol 39:1201–1207. https://doi.org/10.1080/02786820500444838

    Article  CAS  Google Scholar 

  • Weuve J, Puett RC, Schwartz J, Yanosky JD, Laden F, Grodstein F (2012) Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med 172:219–227. https://doi.org/10.1001/archinternmed.2011.683

    Article  Google Scholar 

  • Wu F, Jacobs D, Mitchell C, Miller D, Karol MH (2007) Improving indoor environmental quality for public health: impediments and policy recommendations. Environ Health Perspect 115:953–957. https://doi.org/10.1289/ehp.8986

    Article  Google Scholar 

  • Xu G, Jiao L, Zhang B, Zhao S, Yuan M, Gu Y, Liu J, Tang X (2017) Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China. Aerosol Air Qual Res 17:741–751. https://doi.org/10.4209/aaqr.2016.09.0406

    Article  CAS  Google Scholar 

  • Yaparla D, Nagendra SMS, Gummadi SN (2019) Characterization and health risk assessment of indoor dust in biomass and LPG-based households of rural Telangana, India. J Air Waste Manag Assoc 69:1438–1451. https://doi.org/10.1080/10962247.2019.1668874

    Article  CAS  Google Scholar 

  • Yen YC, Yang CY, Ho CK, Yen PC, Cheng YT, Mena KD, Lee TC, Chen PS (2020) Indoor ozone and particulate matter modify the association between airborne endotoxin and schoolchildren’s lung function. Sci Total Environ 705:135810. https://doi.org/10.1016/j.scitotenv.2019.135810

    Article  CAS  Google Scholar 

  • Zeng L, Du B, Lv L et al (2020) Occupant exposure and ventilation conditions in Chinese residential kitchens: site survey and measurement for an old residential community in Shanghai. J Build Eng 31:101406. https://doi.org/10.1016/j.jobe.2020.101406

    Article  Google Scholar 

  • Zhang S, Li G, Tian L, Guo Q, Pan X (2016) Short-term exposure to air pollution and morbidity of COPD and asthma in East Asian area: a systematic review and meta-analysis. Environ Res 148:15–23. https://doi.org/10.1016/j.envres.2016.03.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very pleased to thank the Department of Environmental Science and Engineering, IIT (ISM) Dhanbad, for ensuring logistical resources. We acknowledge the regional center of two state agencies, Jharkhand State Pollution Control Board and Jharkhand Space Association Center, for providing salient meteorological and background data. We also thank the female volunteers in the study area for their assistance and cooperative approach with the questionnaire survey. The authors acknowledge Mr. Vivek Singh and Ms. Silvia Dutta (research scholar) from the Department of Environmental Science and Engineering, IIT (ISM) Dhanbad, for their support for study area map development.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.K.J. (Manish Kumar Jain) and S.K. (Shravan Kumar); methodology: S.K. (Shravan Kumar); monitoring: S.K. (Shravan Kumar); supervision: M.K.J. (Manish Kumar Jain); formal analysis: S.K. (Shravan Kumar); data interpretations: S.K. (Shravan Kumar) and M.K.J. (Manish Kumar Jain); writing—original draft preparation: S.K. (Shravan Kumar); writing—review and editing: M.K.J. (Manish Kumar Jain) and S.K. (Shravan Kumar). All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Manish Kumar Jain.

Ethics declarations

Ethics Approval and Consent to Participate

Informed consent was obtained from all subjects involved in the study.

Consent for publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 736 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, ., Jain, M.K. Interrelationship of Indoor Particulate Matter and Respiratory Dust Depositions of Women in the Residence of Dhanbad City, India. Environ Sci Pollut Res 29, 4668–4689 (2022). https://doi.org/10.1007/s11356-021-15584-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15584-w

Keywords

Navigation