Skip to main content
Log in

Comparative trace element trends in Posidonia oceanica and its sediments along the Turkish-Mediterranean Sea coast

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Concentrations of eight trace elements (V, Cr, Ni, Cu, Zn, As, Cd, and Pb) were investigated in Posidonia oceanica leaf blades and sediments sampled from 23 stations along the Turkish-Mediterranean Sea coast. Trace element (TE) concentration in both sediment and P. oceanica showed a statistically significant distribution among sampling stations. Most of the TE concentration in samples varied remarkably among stations without a consistent trend. Concentrations of Zn, Cd, Cu, and Pb in the sediment of all of the sampling stations were determined as non-polluted based on the comparison with the sediment quality guideline index. More than a quarter of the sampling stations were found as moderately or heavily polluted for Cr, Ni, and As. The mean TE concentrations found in the sediment sample in the present study were similar to the concentrations reported from the different parts of the eastern Mediterranean Sea. TE concentrations in P. oceanica were generally lower compared to the concentrations in the sediment except for Cd, Zn, and Cu. While a positive correlation was found for Ni concentrations between sediment and P. oceanica samples, negative correlation was detected for V, Cr, Zn, Cu, As, and Cd concentrations between sediment and P. oceanica. The highest bioaccumulation factor in P. oceanica was calculated for Cd. The study area of the present study, especially the western sites (provinces of Antalya and Muğla), hosts millions of tourists annually and under the influence of intensive human activities in summer. Thus, coastal waters are heavily exposed to TEs and significantly positive correlations were detected between the anthropogenic TE pollutants (As, Cd, Cu, Zn, Pb, and V) and natural sourced TE (Ni and Cr). Based on our data, the Mediterranean Sea coast of Turkey does not present significant levels of Zd, Cd, Cu, and Pb pollution, whereas 65% of the stations were heavily polluted with As. Since As categorized as carcinogenic to humans, seafood sources should be monitored in terms of As concentrations. The current data might be useful in further TE-monitoring studies and TE discharge management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abbasi A, Mirekhtiary F (2020) Heavy metals and natural radioactivity concentration in sediments of the Mediterranean Sea coast. Mar Pollut Bull 154:111041

    Article  CAS  Google Scholar 

  • Abdallah MAM, Badr-ElDin AM (2020) Ecological risk assessment of surficial sediment by heavy metals from a submerged archaeology harbor, South Mediterranean Sea, Egypt. Acta Geochim 39:226–235. https://doi.org/10.1007/s11631-019-00340-2

    Article  CAS  Google Scholar 

  • Amor RB, Yahyaoui A, Abidi M et al (2019) Bioavailability and assessment of metal contamination in surface sediments of Rades-Hamam Lif Coast, around Meliane River (Gulf of Tunis, Tunisia, Mediterranean Sea). J Chemother 2019:1–11

    Google Scholar 

  • Amorosi A (2012) Chromium and nickel as indicators of source-to-sink sediment transfer in a Holocene alluvial and coastal system (Po Plain, Italy). Sediment Geol 280:260–269. https://doi.org/10.1016/j.sedgeo.2012.04.011

    Article  CAS  Google Scholar 

  • Amorosi A, Sammartino I (2007) Influence of sediment provenance on background values of potentially toxic metals from near-surface sediments of Po coastal plain (Italy). Int J Earth Sci 96:389–396. https://doi.org/10.1007/s00531-006-0104-8

    Article  CAS  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193. https://doi.org/10.1890/10-1510.1

    Article  Google Scholar 

  • Baroli M, Cristini A, Cossu A, de Falco G, Gazale V, Pergent-Martini C, Pergent G (2001) Concentrations of trace metals (Cd, Cu, Fe, Pb) in Posidonia oceanica seagrass of Liscia Bay, Sardinia (Italy). In: Faranda FM, Guglielmo L, Spezie G (eds) Mediterranean Ecosystems: Structures and Processes. Springer-Verlag, Italia, p 489

    Google Scholar 

  • Bertini L, Focaracci F, Proietti S, Papetti P, Caruso C (2019) Physiological response of Posidonia oceanica to heavy metal pollution along the Tyrrhenian coast. Funct Plant Biol 46:933–941

    Article  CAS  Google Scholar 

  • Bonanno G, Di Martino V (2017) Trace element compartmentation in the seagrass Posidonia oceanica and biomonitoring applications. Mar Pollut Bull 116:196–203

    Article  CAS  Google Scholar 

  • Bonanno G, Orlando-Bonaca M (2018) Chemical elements in Mediterranean macroalgae. A review. Ecotoxicol Environ Saf 148:44–71. https://doi.org/10.1016/j.ecoenv.2017.10.013

    Article  CAS  Google Scholar 

  • Bonanno G, Veneziano V, Orlando-Bonaca M (2020) Comparative assessment of trace element accumulation and biomonitoring in seaweed Ulva lactuca and seagrass Posidonia oceanica. Sci Total Environ 718:137413. https://doi.org/10.1016/j.scitotenv.2020.137413

    Article  CAS  Google Scholar 

  • Bravo I, Focaracci F, Cerfolli F, Papetti P (2016) Relationships between trace elements in Posidonia oceanica shoots and in sediment fractions along Latium coasts (northwestern Mediterranean Sea). Environ Monit Assess 188:157. https://doi.org/10.1007/s10661-016-5122-9

    Article  CAS  Google Scholar 

  • Chifflet S, Tedetti M, Zouch H, Fourati R, Zaghden H, Elleuch B, Quéméneur M, Karray F, Sayadi S, 1 Aix Marseille University. Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France, 2 Laboratoire de Génie de l’Environnement et de l’Ecotechnologie, ENIS, Université de Sfax, BP 1173, 3038 Sfax, Tunisie, 3 Laboratoire des Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, Route de Sidi Mansour km 6, PO Box 1177, 3018 Sfax, Tunisie (2019) Dynamics of trace metals in a shallow coastal ecosystem: Insights from the Gulf of Gabès (Southern Mediterranean Sea). AIMS Environ Sci 6:277–297

    Article  CAS  Google Scholar 

  • Cobelo-García A (2003) Heavy metal sedimentary record in a Galician Ria (NW Spain): background values and recent contamination. Mar Pollut Bull 46:1253–1262. https://doi.org/10.1016/S0025-326X(03)00168-1

    Article  CAS  Google Scholar 

  • Csuros M, Csuros C (2002) Environmental Sampling and Analysis for Metals, 1st Editio. CRC Press, Florida

    Google Scholar 

  • Debono S, Borg JA (2006) Use of Posidonia oceanica as a bioindicator of ecological status for Maltese coastal waters. Biol Mar Mediterr 13:206–209

    Google Scholar 

  • Di Leo A, Annicchiarico C, Cardellicchio N, et al (2013) Trace metal distributions in Posidonia oceanica and sediments from Taranto Gulf (Ionian Sea, Southern Italy). Mediterr Mar Sci 14:204. doi: 10.12681/mms.316

  • El Zrelli R, Courjault-Radé P, Rabaoui L et al (2017) Biomonitoring of coastal pollution in the Gulf of Gabes (SE, Tunisia): use of Posidonia oceanica seagrass as a bioindicator and its mat as an archive of coastal metallic contamination. Environ Sci Pollut Res 24:22214–22225. https://doi.org/10.1007/s11356-017-9856-x

    Article  CAS  Google Scholar 

  • El-Moselhy KM (2006) Distribution of vanadium ın bottom sediments from the marine coastal area of the Egyptian seas. Egypt J Aquat Res 32:12–21

    CAS  Google Scholar 

  • El-Sorogy AS, Attiah A (2015) Assessment of metal contamination in coastal sediments, seawaters and bivalves of the Mediterranean Sea coast, Egypt. Mar Pollut Bull 101:867–871. https://doi.org/10.1016/j.marpolbul.2015.11.017

    Article  CAS  Google Scholar 

  • EPA (1999) SW-846 reference methodology: method 3050B. Standard operating procedure for the digestion of. Soil/Sediment Samples Using a hotplate/beaker digestion technique, Chicago, Illinois

    Google Scholar 

  • Ferrat L, Wyllie-Echeverria S, Cates G et al (2012) Posidonia oceanica and Zostera marina as Potential Biomarkers of Heavy Metal Contamination in Coastal Systems. In: Posidonia oceanica and Zostera marina as potential biomarkers of Heavy Metal Contamination in Coastal Systems. Ecological Water Quality - Water Treatment and Reuse. InTech, In

    Chapter  Google Scholar 

  • Guillén JE, Sánchez Lizaso JL, Jiménez S, Martínez J, Codina A, Montero M, Triviño A, Soler G, Zubcoff JJ (2013) Evolution of Posidonia oceanica seagrass meadows and its implications for management. J Sea Res 83:65–71. https://doi.org/10.1016/j.seares.2013.04.012

    Article  Google Scholar 

  • Holmer M, Argyrou M, Dalsgaard T, Danovaro R, Diaz-Almela E, Duarte CM, Frederiksen M, Grau A, Karakassis I, Marbà N, Mirto S, Pérez M, Pusceddu A, Tsapakis M (2008) Effects of fish farm waste on Posidonia oceanica meadows: synthesis and provision of monitoring and management tools. Mar Pollut Bull 56:1618–1629. https://doi.org/10.1016/j.marpolbul.2008.05.020

    Article  CAS  Google Scholar 

  • Huang Z, Liu C, Zhao X, Dong J, Zheng B (2020) Risk assessment of heavy metals in the surface sediment at the drinking water source of the Xiangjiang River in South China. Environ Sci Eur 32:23. https://doi.org/10.1186/s12302-020-00305-w

    Article  CAS  Google Scholar 

  • Lafabrie C, Pergent G, Pergent-Martini C, Capiomont A (2007) Posidonia oceanica: a tracer of past mercury contamination. Environ Pollut 148:688–692. https://doi.org/10.1016/j.envpol.2006.11.015

    Article  CAS  Google Scholar 

  • Lafabrie C, Pergent-Martini C, Pergent G (2008) Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean). Environ Pollut 151:262–268. https://doi.org/10.1016/j.envpol.2007.01.047

    Article  CAS  Google Scholar 

  • Lafabrie C, Pergent G, Pergent-Martini C (2009) Utilization of the seagrass Posidonia oceanica to evaluate the spatial dispersion of metal contamination. Sci Total Environ 407:2440–2446. https://doi.org/10.1016/j.scitotenv.2008.11.001

    Article  CAS  Google Scholar 

  • Martínez-Guijarro R, Paches M, Romero I, Aguado D (2019) Enrichment and contamination level of trace metals in the Mediterranean marine sediments of Spain. Sci Total Environ 693:133566

    Article  Google Scholar 

  • Merhaby D, Ouddane B, Net S, Halwani J (2018) Assessment of trace metals contamination in surficial sediments along Lebanese Coastal Zone. Mar Pollut Bull 133:881–890

    Article  CAS  Google Scholar 

  • Montefalcone M, Albertelli G, Morri C, Parravicini V, Bianchi CN (2009) Legal protection is not enough: Posidonia oceanica meadows in marine protected areas are not healthier than those in unprotected areas of the northwest Mediterranean Sea. Mar Pollut Bull 58:515–519. https://doi.org/10.1016/j.marpolbul.2008.12.001

    Article  CAS  Google Scholar 

  • Mutlu E, Özvarol Y, Şahin A, Duman GS, Karaca D (2020) Macro litter distribution of the Turkish Mediterranean coasts dominated by pleasure crafts. Mar Pollut Bull 151:110833. https://doi.org/10.1016/j.marpolbul.2019.110833

    Article  CAS  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook on the Toxicology of Metals

  • Pergent-Martini C (1998) Posidonia oceanica: a biological indicator of past and present mercury contamination in the Mediterranean Sea. Mar Environ Res 45:101–111. https://doi.org/10.1016/S0141-1136(97)00023-8

    Article  CAS  Google Scholar 

  • Pergent-Martini C, Leoni V, Pasqualini V, Ardizzone GD, Balestri E, Bedini R, Belluscio A, Belsher T, Borg J, Boudouresque CF, Boumaza S, Bouquegneau JM, Buia MC, Calvo S, Cebrian J, Charbonnel E, Cinelli F, Cossu A, Maida GD, Dural B, Francour P, Gobert S, Lepoint G, Meinesz A, Molenaar H, Mansour HM, Panayotidis P, Peirano A, Pergent G, Piazzi L, Pirrotta M, Relini G, Romero J, Sanchez-Lizaso JL, Semroud R, Shembri P, Shili A, Tomasello A, Velimirov B (2005) Descriptors of Posidonia oceanica meadows: use and application. Ecol Indic 5:213–230. https://doi.org/10.1016/j.ecolind.2005.02.004

    Article  Google Scholar 

  • Perin G, Rebello Wagener A, Hamacher C et al (1997) A five-year study on the heavy-metal pollution of Guanabara Bay sediments (Rio de Janeiro, Brazil) and evaluation of the metal bioavailability by means of geochemical speciation. Water Res 31:3017–3028

    Article  CAS  Google Scholar 

  • R Core Team (2020) R: A Language and Environment for Statistical Computing

  • Richir J (2016) Trace elements in marine environments: occurrence, threats and monitoring with special focus on the Coastal Mediterranean. J Environ Anal Toxicol 6:1000349. https://doi.org/10.4172/2161-0525.1000349

    Article  Google Scholar 

  • Romeo M, Gnassia Barelli M, Juhel T, Meinesz A (1995) Memorization of heavy metals by scales of the seagrass Posidonia oceanica, collected in the NW Mediterranean. Mar Ecol Prog Ser 120:211–218. https://doi.org/10.3354/meps120211

    Article  CAS  Google Scholar 

  • Romero J, Alcoverro T, Roca G, Pérez M (2015) Bioindicators, monitoring, and management using Mediterranean seagrasses: what have we learned from the ımplementation of the EU Water Framework Directive? The Handbook of Environmental Chemistry. Springer, In, pp 161–182

    Google Scholar 

  • Roussiez V, Ludwig W, Probst J-L, Monaco A (2005) Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): an approach based on 133Cs normalization and lead isotope measurements. Environ Pollut 138:167–177. https://doi.org/10.1016/j.envpol.2005.02.004

    Article  CAS  Google Scholar 

  • Rubio B, Nombela M, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980. https://doi.org/10.1016/S0025-326X(00)00039-4

    Article  CAS  Google Scholar 

  • Ruiz JM, Romero J (2003) Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica. Mar Pollut Bull 46:1523–1533. https://doi.org/10.1016/j.marpolbul.2003.08.021

    Article  CAS  Google Scholar 

  • Saddik M, Fadili A, Makan A (2019) Assessment of heavy metal contamination in surface sediments along the Mediterranean coast of Morocco. Environ Monit Assess 191:197

    Article  Google Scholar 

  • Saliha B-T, Waffa H, Mourad B (2016) Assessment of metallic trace elements using the seagrass Posidonia oceanica and the surface sediment from north eastern of Algeria. Asian J Biol Sci 10:17–26. https://doi.org/10.3923/ajbs.2017.17.26

    Article  CAS  Google Scholar 

  • Salomons W, Förstner U (1988) Environmental management of solid waste. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  • Sañudo-Wilhelmy SA, Flegal AR (1991) Trace element distributions in coastal waters along the US-Mexican boundary: relative contributions of natural processes vs. anthropogenic inputs. Mar Chem 33:371–392. https://doi.org/10.1016/0304-4203(91)90078-B

    Article  Google Scholar 

  • Serrano O, Mateo MA, Dueñas-Bohórquez A, Renom P, López-Sáez JA, Martínez Cortizas A (2011) The Posidonia oceanica marine sedimentary record: a Holocene archive of heavy metal pollution. Sci Total Environ 409:4831–4840. https://doi.org/10.1016/j.scitotenv.2011.08.001

    Article  CAS  Google Scholar 

  • Shi T, Ma J, Wu X, Ju T, Lin X, Zhang Y, Li X, Gong Y, Hou H, Zhao L, Wu F (2018) Inventories of heavy metal inputs and outputs to and from agricultural soils: a review. Ecotoxicol Environ Saf 164:118–124. https://doi.org/10.1016/j.ecoenv.2018.08.016

    Article  CAS  Google Scholar 

  • Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumpong HP, Carruthers TJB, Coles RG, Dennison WC, Erftemeijer PLA, Fortes MD, Freeman AS, Jagtap TG, Kamal AHM, Kendrick GA, Judson Kenworthy W, la Nafie YA, Nasution IM, Orth RJ, Prathep A, Sanciangco JC, Tussenbroek B, Vergara SG, Waycott M, Zieman JC (2011) Extinction risk assessment of the world’s seagrass species. Biol Conserv 144:1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010

    Article  Google Scholar 

  • Shui L, Pan X, Chen X, Chang F, Wan D, Liu D, Hu M, Li S, Wang Y (2020) Pollution characteristics and ecological risk assessment of heavy metals in sediments of the Three Gorges Reservoir. Water 12:1798. https://doi.org/10.3390/w12061798

    Article  CAS  Google Scholar 

  • Soliman NF, Nasr SM, Okbah MA (2015) Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. J Environ Health Sci Eng 13:70. https://doi.org/10.1186/s40201-015-0223-x

    Article  CAS  Google Scholar 

  • Tacon A (1987) The nutrition and feeding of farmed fish and shrimp- a training manual. 2. Nutrient sources and Composition. In: Food Agric. Organ. United Nations

  • Tang J (2008) Background value of soil heavy metal in the Three Gorges Reservoir District. Chinese J Eco-Agriculture 16:848–852. https://doi.org/10.3724/SP.J.1011.2008.00848

    Article  CAS  Google Scholar 

  • Terzi E, Civelek F (2021) Cu, Cd, As and Hg resistance levels in Escherichia coli isolated from Mediterranean mussel and sea snail in the Southeastern Black Sea. Mar Sci Technol Bull 10:36–41

    Google Scholar 

  • Tovar-Sanchez A, Seron J, Marba N et al (2010) Long-term records of trace metal content of western Mediterranean seagrass (Posidonia oceanica) meadows: Natural and anthropogenic contributions. J Geophys Res G Biogeosciences 115:G02006. https://doi.org/10.1029/2009JG001076

    Article  CAS  Google Scholar 

  • Warnau M, Ledent G, Temara A, Bouquegneau JM, Jangoux M, Dubois P (1995) Heavy metals in Posidonia oceanica and Paracentrotus lividus from seagrass beds of the north-western Mediterranean. Sci Total Environ 171:95–99

    Article  CAS  Google Scholar 

  • WHO (2004) Vitamin and mineral requirements in human nutrition, 2. edition

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag New York

    Book  Google Scholar 

  • Wilke CO (2020) cowplot: streamlined plot theme and plot annotations for “ggplot2”

  • Worakhunpiset S (2018) Trace elements in marine sediment and organisms in the Gulf of Thailand. Int J Environ Res Public Health 15:810. https://doi.org/10.3390/ijerph15040810

    Article  CAS  Google Scholar 

  • Yalcin MG (2009) Heavy mineral distribution as related to environmental conditions for modern beach sediments from the Susanoglu (Atakent, Mersin, Turkey). Environ Geol 58:119–129. https://doi.org/10.1007/s00254-008-1499-2

    Article  CAS  Google Scholar 

  • Zakhama-Sraieb R, Sghaier Y, Ben Hmida A, Xharfi-Cheikhrouha F (2014) Mercury contamination in Posidonia oceanica in a harbour area of the eastern coast of Tunisia. In: 5ème Symposium Médoterranéen sur la Végétation Marine. pp 184–187

  • Zakhama-Sraieb R, Sghaier YR, Ben HA et al (2016) Variation along the year of trace metal levels in the compartments of the seagrass Posidonia oceanica in Port El Kantaoui. Tunisia Environ Sci Pollut Res 23:1681–1690

    Article  CAS  Google Scholar 

  • Zeghdoudi F, Tanjir LM, Ouali N et al (2019) Concentrations of trace-metal elements in the superficial sediment and the marine magnophyte, Posidonia oceanica (L) Delile, 1813 from the Gulf of Skikda (Mediterranean coast, East of Algeria). Cah Biol Mar 60:223–233. https://doi.org/10.21411/CBM.A.BBC0ABC8

    Article  Google Scholar 

  • Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150. https://doi.org/10.1016/j.aca.2007.11.018

    Article  CAS  Google Scholar 

  • Zohra BS, Habib A (2016) Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environ Sci Pollut Res 23:13954–13963

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the crew of the R/V “Akdeniz Su.”

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

Sampling of the study was carried out during an acoustic survey study within the framework of the project funded by the Scientific and Technological Research Council of Turkey (TUBITAK: 117Y133). Experimental procedures of the study were funded by the Scientific Research Projects Coordination Unit of Karadeniz Technical University (Project No. FHD-2020-9100).

Author information

Authors and Affiliations

Authors

Contributions

RÇÖ and EM acquired the financial support for the project leading to this publication. KG, RÇÖ, and AŞ contributed to the study conception and design. Sampling was performed by YÖ, AŞ, and RÇÖ. KG performed trace element analysis. The first draft of the manuscript was written by RÇÖ and KG. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rafet Çağrı Öztürk.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: V. V.S.S. Sarma

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, R.Ç., Gedik, K., Şahin, A. et al. Comparative trace element trends in Posidonia oceanica and its sediments along the Turkish-Mediterranean Sea coast. Environ Sci Pollut Res 28, 61397–61407 (2021). https://doi.org/10.1007/s11356-021-15089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15089-6

Keywords

Navigation