Skip to main content

Advertisement

Log in

Targeting NLRP3 inflammasome as a chief instigator of obesity, contributing to local adipose tissue inflammation and insulin resistance

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Inflammasome activity plays a vital role in various non-microbial disease states correlated with prolonged inflammation. NLRP3 inflammasome function and IL-1β formation are augmented in obesity and several obesity-linked metabolic disorders (i.e. diabetes mellitus, hypertension, hepatic steatosis, cancer, arthritis, and sleep apnea). Also, several factors are associated with the progression of diseases viz. increased plasma glucose, fatty acids, and β-amyloid are augmented during obesity and activate NLRP3 inflammasome expression. Prolonged NLRP3 stimulation seems to play significant role in various disorders, though better knowledge of inflammasome regulation and action might result in improved therapeutic tactics. Numerous compounds that mitigate NLRP3 inflammasome expression and suppress its chief effector, IL-1β are presently studied in clinical phases as therapeutics to manage or prevent these common disorders. A deep research on the literature available till date for inflammasome in obesity was conducted using various medical sites like PubMed, HINARI, MEDLINE from the internet, and data was collected simultaneously. The present review aims to examine the prospects of inflammasome as a major progenitor in the progression of obesity via directing their role in regulating appetite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable

Abbreviations

NLRP3:

NLR family pyrin domain containing 3

IL:

interleukin

NOD:

nucleotide-binding oligomerization domain

NLRs:

NOD-like receptors

ASC:

apoptosis-associated speck-like protein containing a caspase recruitment domain

DAMP:

damage-associated molecular patter

HFD:

high-fat diet

PRRs:

pattern-recognition receptors

PYD:

pyrin domain

STAT :

signal transducer and activator of transcription

ROS:

reactive oxygen species

TRAF:

TNF receptor-associated factor

P2RX7:

P2X purinoceptor

JNK:

c-Jun N terminal kinase

PRRs:

pathogen recognition receptors

BMI:

body mass index

NE:

norepinephrine

AABs:

aged adipose B cells

MSC:

mesenchymal stem cells

ECM:

extracellular matrix

References

  • Abdel-Daim MM (2019) Applications of antioxidants in metabolic disorders and degenerative diseases: mechanistic approach. Oxidative Med Cell Longev 2019:4179676

    Article  Google Scholar 

  • Aganna E (2004) Allelic variants in genes associated with hereditary periodic fever syndromes as susceptibility factors for reactive systemic AA amyloidosis. Genes Immun 5(4):289–293

    Article  CAS  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  CAS  Google Scholar 

  • Ali Z (2013) Pharmacokinetic and pharmacodynamic profiling of a P2X7 receptor allosteric modulator GSK1482160 in healthy human subjects. Br J Clin Pharmacol 75(1):197–207

    Article  CAS  Google Scholar 

  • Aygun AD (2005) Proinflammatory cytokines and leptin are increased in serum of prepubertal obese children. Mediat Inflamm 3:180–183

    Article  CAS  Google Scholar 

  • Benetti E (2016) Empagliflozin protects against diet-induced NLRP-3 inflammasome activation and lipid accumulation. J Pharmacol Exp Ther 359(1):45–53

    Article  CAS  Google Scholar 

  • Bryan NB (2009) Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol 182(5):3173–3182

    Article  CAS  Google Scholar 

  • Camel CD (2019) Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab 30(6):1024–1039.e6

    Article  CAS  Google Scholar 

  • Camell CD (2017) Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nat 550(7674):119–123

    Article  CAS  Google Scholar 

  • Camello-Almaraz C (2006) Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Phys Cell Phys 291(5):C1082–C1088

    CAS  Google Scholar 

  • Chi Y (2015) Apelin inhibits the activation of the nucleotide-binding domain and the leucine-rich, repeat-containing family, pyrin-containing 3 (NLRP3) inflammasome and ameliorates insulin resistance in severely burned rats. Surgery 157(6):1142–1152

    Article  Google Scholar 

  • Colotta F (1993) Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Sci 261(5120):472–475

    Article  CAS  Google Scholar 

  • Cui J (2010) NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways and antiviral immunity. Cell 141(3):483–496

    Article  CAS  Google Scholar 

  • DeMarco MA (2011) Obesity and younger age at gout onset in a community-based cohort. Arthritis Care Res 63(8):1108–1114

    Article  Google Scholar 

  • Di Giovine FS (1987) Interleukin 1 (IL 1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal-induced IL 1. J Immunol 138(10):3212–3218

    Article  Google Scholar 

  • Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147

    Article  CAS  Google Scholar 

  • Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  CAS  Google Scholar 

  • Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflamasomes are required for atherogenesis and activated by cholesterol crystals that form early in disease. Nat 464:1357–1361

    Article  CAS  Google Scholar 

  • Finucane OM, Lyons CL, Murpy AM, Reynolds CM, Klinger C, Healy NP, Cookie AA, Coll RC, Mccallan L, Nilaweera KN, Reilley ME, Tierney AC, Morine MJ, Daza AL, Miranda JL, Connor DP, Neil LA, Mccgillicudy F, Roche FM (2015) Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes 64(6):2116–2128

    Article  CAS  Google Scholar 

  • Ghayur T (1997) Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN- γ production. Nat 386:619–623

    Article  CAS  Google Scholar 

  • Giordano A (2013) Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J Lipid Res 54(9):2423–2436

    Article  CAS  Google Scholar 

  • Girousse A (2013) Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol 11(2):e1001485

    Article  CAS  Google Scholar 

  • Goossen GH (2012) Expression of NLRP3 inflammasome and T cell population markers in adipose tissue are associated with insulin resistance and impaired glucose metabolism in humans. Mol Immunol 50(3):142–149

    Article  CAS  Google Scholar 

  • Harrington LE (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immun 6(11):1123–1132

    Article  CAS  Google Scholar 

  • Henriksb BD, Schertzer JD (2015) Is immunity a mechanism contributing to statin-induced diabetes? Adipocyte 4(4):232–238

    Article  CAS  Google Scholar 

  • Henriksbo BD (2019) Statins promote interleukin-1β-dependent adipocyte insulin resistance through lower prenylation, not cholesterol. Diabetes 68(7):1441–1448

    Article  CAS  Google Scholar 

  • Horwood NJ (1998) Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J Clin Invest 101(3):595–603

    Article  CAS  Google Scholar 

  • Hotamisligil GS, Erbay E (2008) Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8(12):923–934

    Article  CAS  Google Scholar 

  • Hotamisligil GS, Spiegelman BM (1994) Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43(11):1271–1278

    Article  CAS  Google Scholar 

  • Hotamisligil GS, Shargill S, Spiegelman M (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091):87–91

    Article  CAS  Google Scholar 

  • Jager J (2007) Interleukin-1 beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrin 148(1):241–251

    Article  CAS  Google Scholar 

  • Juraschek P, Miller ER, Gelber AC (2013) Body mass index, obesity, and prevalent gout in the United States in 1988-1994 and 2007-2010. Arthritis Care Res 65(1):127–132

    Article  Google Scholar 

  • Kanneganti TD (2006) Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281(48):36560–36568

    Article  CAS  Google Scholar 

  • Kanneganti TD, Ozören N, Malapel MB, Amer A, Park LH, Franchi L, Whitfield J, Barchet W, Marco Colonna M, Vandenabeele P, Bertin J, Coyle A, Grant EP, Akira S, Núñez G (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–236

    Article  CAS  Google Scholar 

  • Kershaw EE (2006) Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 55(1):148–157

    Article  CAS  Google Scholar 

  • Keystone EC (2012) Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann Rheum Dis 71(10):1630–1635

    Article  CAS  Google Scholar 

  • Kotzbeck P, Giordano A, Mondini E, Severi I, Venema W, Cecchini MP, Kershaw EE, Barbatelli G, Haemmerle G, Zechner R, Cinti S (2018) Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation. J Lipid Res 59(5):784–794

    Article  CAS  Google Scholar 

  • Kuida K (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Sci 267(5206):2000–2003

    Article  CAS  Google Scholar 

  • Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157(5):1013–1022

    Article  CAS  Google Scholar 

  • Lancaster GI (2018) Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab 27(5):1096–1110.e5

    Article  CAS  Google Scholar 

  • Landis RC (2002) Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages. Arthritis Rheum 46(11):3026–3033

    Article  CAS  Google Scholar 

  • Larsen CM (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356(15):1517–1526

    Article  CAS  Google Scholar 

  • Latz E (2010) The inflammasomes: mechanisms of activation and function. Curr Opin Immunol 22(1):28–33

    Article  CAS  Google Scholar 

  • Lee YH (2003) c-Jun N-terminal Kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278(5):2896–2902

    Article  CAS  Google Scholar 

  • Lee HM (2013) Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 62(1):194–204

    Article  CAS  Google Scholar 

  • Lehr S (2012) Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics 11(1):M111.010504

    Article  CAS  Google Scholar 

  • Lemasters JJ (2009) Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787(11):1395–1401

    Article  CAS  Google Scholar 

  • Li P (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80(3):401–411

    Article  CAS  Google Scholar 

  • Li H, Ambade A, Re F (2009) Cutting edge: necrosis activates the NLRP3 inflammasome. J Immunol 183(3):1528–1532

    Article  CAS  Google Scholar 

  • Makkonen N (1999) Contrasting effects of alendronate and clodronate on RAW 264 macrophages: the role of a bisphosphonate metabolite. Eur J Pharm Sci 8(2):109–118

    Article  CAS  Google Scholar 

  • Mariathasan S, Weiss DS, Newton K, Jacqueline McBride J, O'Rourke K, Girma R, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nat 440:228–232

    Article  CAS  Google Scholar 

  • Martinon F (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nat 440:237–241

    Article  CAS  Google Scholar 

  • Masters SL (2010) Activation of the Nlrp3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 11(10):897–904

    Article  CAS  Google Scholar 

  • Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nat 442:39–44

    Article  CAS  Google Scholar 

  • Mönkkönen JJ, Similä J, Rogers J (1998) Effects of tiludronate and ibandronate on the secretion of proinflammatory cytokines and nitric oxide from macrophages in vitro. Life Sci 62(8):PL95–PL102

    Article  Google Scholar 

  • Monteleone M, Stow JL, Schroder K (2015) Mechanisms of unconventional secretion of IL-1 family cytokines. Cytokine 74(2):213–218

    Article  CAS  Google Scholar 

  • Moore CB (2011) NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451:573–577

    Article  CAS  Google Scholar 

  • Moschen AR (2011) Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Mol Med 17(7-8):840–845

    Article  CAS  Google Scholar 

  • Murakami T (2012) Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 109(28):11282–11287

    Article  CAS  Google Scholar 

  • Nakahira K (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230

    Article  CAS  Google Scholar 

  • Netea MG (2006) Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med 12(6):650–656

    Article  CAS  Google Scholar 

  • Odegaard JI, Chawla A (2008) Mechanisms of macrophage activation in obesity-induced insulin resistance. Nat Clin Pract Endocrinol Metab 4(11):619–626

    Article  CAS  Google Scholar 

  • Olee T (1999) IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J Immunol 162(2):1096–1100

    Article  CAS  Google Scholar 

  • Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  CAS  Google Scholar 

  • Popa AR (2020) Risk factors for adiposity in the urban population and influence on the prevalence of overweight and obesity. Exp Ther Med 20(1):129–133

    Google Scholar 

  • Powell DJ (2003) Ceramide disables 3-phosphoinositide binding to the Pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol Cell Biol 23(21):7794–7808

    Article  CAS  Google Scholar 

  • Reaven GM (1998) Role of insulin resistance in human disease. Diabetes 37(12):1595–1607

    Article  Google Scholar 

  • Reinhard C (1997) Tumor necrosis factor alpha-induced activation of c-jun N-terminal kinase is mediated by TRAF2. EMBO J 16(5):1080–1092

    Article  CAS  Google Scholar 

  • Rissanen A (2012) Effect of anti-IL-1β antibody (Canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes Metab 14(12):1088–1096

    Article  CAS  Google Scholar 

  • Shao W (2007) The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem 282(50):36321–36329

    Article  CAS  Google Scholar 

  • Shi Y, Mucsi AD, Ng G (2010) Monosodium urate crystals in inflammation and immunity. Immunol Rev 233(1):203–217

    Article  CAS  Google Scholar 

  • Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterol 132(6):2169–2180

    Article  CAS  Google Scholar 

  • Stienstra R (2010) The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 12(6):593–605

    Article  CAS  Google Scholar 

  • Stienstra R (2011) Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci U S A 108(37):15324–15329

    Article  CAS  Google Scholar 

  • Stock TC (2012) Efficacy and safety of CE-224,535, an antagonist of P2X7 receptor, in treatment of patients with rheumatoid arthritis inadequately controlled by methotrexate. J Rheumatol 39(4):720–727

    Article  CAS  Google Scholar 

  • Strowig T (2012) Inflammasomes in health and disease. Nat 481:278–286

    Article  CAS  Google Scholar 

  • Sutterwala FS, Ogura Y, Szczepanik M, Tejero ML, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galán JE, Askenase PW, Flavel RA (2006) Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24(3):317–327

    Article  CAS  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  CAS  Google Scholar 

  • Taniguchi CM, Emanuelli B, Kahn R (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96

    Article  CAS  Google Scholar 

  • Tanti JF (1994) Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem 269(8):6051–6057

    Article  CAS  Google Scholar 

  • Tricarico PM (2018) Alendronate treatment induces IL-1B expression and apoptosis in glioblastoma cell line. Inflammopharmacol 26(1):285–290

    Article  CAS  Google Scholar 

  • Turner N, Xin Y, Hamish DT, Brenna O, Amanda EB, Elysha NT, Corrine EF, Hemna G, Teo JD, McEwen HP, Timothy AC, Stephen MB, Abhirup D, Greg MK, Clinton RB, Kyle LH, Fath T, Carsten SP, Gregory JC, Magdalene KM, Jonathan CM, Anthony S (2018) Don A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nat Commun 9:3165

    Article  CAS  Google Scholar 

  • Turpin SM, Hammerschmidt P, Chen W, Jais A, Timper K, Awazawa V, Brodesser S, Bruining JC (2019) CerS1-Derived C 18:0 Ceramide in skeletal muscle promotes obesity-induced insulin resistance. Cell Rep 26(1):1–10.e7

    Article  CAS  Google Scholar 

  • Unamuno X (2019) NLRP3 inflammasome blockade reduces adipose tissue inflammation and extracellular matrix remodeling. Cell Mol Immunol

  • Vandanmagsar B (2011) The NALP3/NLRP3 inflammasome instigates obesity-induced autoinflammation and insulin resistance. Nat Med 17(2):179–188

    Article  CAS  Google Scholar 

  • Vesa CM (2020) Current data regarding the relationship between type 2 diabetes mellitus and cardiovascular risk factors. Diagnostics 10(5):314

    Article  CAS  Google Scholar 

  • Wang X (2015) Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway. Sci Rep 5

  • Wang L (2017) NLRP3 inflammasome activation in mesenchymal stem cells inhibits osteogenic differentiation and enhances adipogenic differentiation. Biochem Biophys Res Commun 484(4):871–877

    Article  CAS  Google Scholar 

  • Weisberg SP (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808

    Article  CAS  Google Scholar 

  • Wen H (2011) Fatty acid-induced NLRP3-PYCARD inflammasome activation interferes with insulin signaling. Nat Immunol 12(5):408–415

    Article  CAS  Google Scholar 

  • Xia X (2010) NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity 34(6):843–853

    Article  CAS  Google Scholar 

  • Xu H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830

    Article  CAS  Google Scholar 

  • Yagnik DR (2000) Noninflammatory phagocytosis of monosodium urate monohydrate crystals by mouse macrophages. Implications for the control of joint inflammation in gout. Arthritis Rheum 43(8):1779–1789

    Article  CAS  Google Scholar 

  • Yang Y (2019) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10(2):128

    Article  Google Scholar 

  • Ye Y (2017) SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther 31(2):119–132

    Article  CAS  Google Scholar 

  • Ye Z, Ting P (2008) NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 20(1):3–9

    Article  CAS  Google Scholar 

  • Zhang SY (2018) Adipocyte-derived lysophosphatidylcholine activates adipocyte and adipose tissue macrophage nod-like receptor protein 3 inflammasomes mediating homocysteine-induced insulin resistance. EBioMedicine 31:202–216

    Article  Google Scholar 

  • Zhang Z (2019) circARF3 Alleviates mitophagy-mediated inflammation by targeting miR-103/TRAF3 in mouse adipose tissue. Mol Ther Nucleic Acids 14:192–203

    Article  CAS  Google Scholar 

  • Zorrilla EP (2007) Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc Natl Acad Sci U S A 104(26):11097–11102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AS and TB: Conceived the study and wrote the first draft of the paper; IK, SS and NS: Data compilation; LA: Proof read

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

All the authors have approved the manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehgal, A., Behl, T., Kaur, I. et al. Targeting NLRP3 inflammasome as a chief instigator of obesity, contributing to local adipose tissue inflammation and insulin resistance. Environ Sci Pollut Res 28, 43102–43113 (2021). https://doi.org/10.1007/s11356-021-14904-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14904-4

Keywords

Navigation