Skip to main content

Advertisement

Log in

Various strategies applied for the removal of emerging micropollutant sulfamethazine: a systematic review

  • Circular Economy for Global Water Security
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pharmaceutical active drug(s) especially sulfamethazine (SMZ) is considered as one of the major emerging microcontaminants due its long-term existence in the environmental system and that can influence on the developmental of antibacterial resistance genes. Because of this region it has a great concern in the aquatic system. Moreover, the vast utilization of SMZ, excretion of undigested portion by animals and also through dumping or mishandling, SMZ is frequently detected in various samples (including water) of different places and its surroundings. Additionally, reports shown it has toxic effect against microalgae and mice. Thus, that can lead to several investigators, focusing on removal of SMZ alone or in combination of other drugs in wastewater treatment plants (WWTPs) either by abiotic and/or biotic treatment methods. The present review provides an overview of the toxic effect of SMZ and SMZ degradation/removal in abiotic and biotic processes. Finally, reveals the need of further implication of integrated treatments (including engineered biological mediators) to understand ideal biological approaches for the mineralization of SMZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Acosta-Rangel A, Sánchez-Polo M, Rozalen M, Rivera-Utrilla J, Polo AMS, Mota AJ (2019) Comparative study of the oxidative degradation of different 4-aminobenzene sulfonamides in aqueous solution by sulfite activation in the presence of Fe(0), Fe(II), Fe(III) Or Fe(VI). Water 11:2332

    CAS  Google Scholar 

  • Awad YM, Ok YS, Igalavithana AD, Lee YH, Sonn YK, Usman ARA, Al-Wabel MI, Lee SS (2016) Sulphamethazine in poultry manure changes carbon and nitrogen mineralisation in soils. Chem Ecol 32:899–918

    CAS  Google Scholar 

  • Bai ZY, Yang Q, Wang JL (2016) Catalytic ozonation of sulfamethazine antibiotics using Ce0.1Fe0.9OOH: catalyst preparation and performance. Chemosphere 161:174–180

    CAS  Google Scholar 

  • Bai Z, Yang Q, Wang J (2017) Degradation of sulfamethazine antibiotics in Fenton-like system using Fe3O4 magnetic nanoparticles as catalyst. Environ Prog Sustain Energy 36:1743–1753

    CAS  Google Scholar 

  • Bai ZY, Yang Q, Wang JL (2018) Catalytic ozonation of sulfamethazine antibiotics using Fe3O4/multiwalled carbon nanotubes. Environ Prog Sustain Energy 37:678e685

    Google Scholar 

  • Barhoumi N, Oturan N, Olvera-Vargas H, Brillas E, Gadri A, Ammar S, Oturan MA (2016) Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment. Water Res 94:52–61

    CAS  Google Scholar 

  • Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S (2020) New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 268:128827

    Google Scholar 

  • Cao L, Zhang J, Zhao R, Deng Y, Liu J, Fu W, Lei Y, Zhang T, Li X, Li B (2019) Genomic characterization, kinetics, and pathways of sulfamethazine biodegradation by Paenarthrobacter sp. A01. Environ Int 131:104961

    CAS  Google Scholar 

  • Chen Q, Zhang L, Han Y, Fang J, Wang H (2020) Degradation and metabolic pathways of sulfamethazine and enrofloxacin in Chlorella vulgaris and Scenedesmus obliquus treatment systems. Environ Sci Pollut Res 27:28198–28208

    CAS  Google Scholar 

  • Christensen AM, Ingerslev F, Baun A (2006) Ecotoxicity of mixtures of antibiotics used in aquacultures. Environ Toxicol Chem 25:2208–2215

    CAS  Google Scholar 

  • Chu LB, Wang JL, Liu YK (2015) Degradation of sulfamethazine in sewage sludge mixture by gamma irradiation. Radiat Phys Chem 108:102–105

    CAS  Google Scholar 

  • Chu YX, Fang CR, Wang H, Wu XK, Gu YJ, Shu J (2017) Degradation of sulfonamides during anaerobic composting of swine manure. Chem Ecol 33:339–351

    CAS  Google Scholar 

  • De Liguoro M, Fioretto B, Poltronieri C, Gallina G (2009) The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere 75:1519–1524

    Google Scholar 

  • Ding HY, Wu YX, Zou BC, Lou Q, Zhang WH, Zhong JY, Lu L, Dai GF (2016) Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. J Hazard Mater 307:350–358

    CAS  Google Scholar 

  • Dolliver H, Kumar K, Gupta S (2007) Sulfamethazine uptake by plants from manure-amended soil. J Environ Qual 36:1224–1230

    CAS  Google Scholar 

  • Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245–1253

    CAS  Google Scholar 

  • Dong HY, Yuan XJ, Wang WD, Qiang ZM (2016) Occurrence and removal of antibiotics in ecological and conventional wastewater treatment processes: a field study. J Environ Manag 178:11–19

    CAS  Google Scholar 

  • Dong FL, Li C, He GL, Chen XB, Mao XW (2017) Kinetics and degradation pathway of sulfamethazine chlorination in pilot-scale water distribution systems. Chem Eng J 321:521–532

    CAS  Google Scholar 

  • El-Ghenymy A, Rodriguez RM, Arias C, Centellas F, Garrido JA, Cabot PL, Brillas E (2013) Electro-Fenton and photoelectro-Fenton degradation of the antimicrobial sulfamethazine using a boron-doped diamond anode and an air-diffusion cathode. J Electroanal Chem 701:7–13

    CAS  Google Scholar 

  • Fan Y, Ji YF, Kong DY, Lu JH, Zhou QS (2015) Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J Hazard Mater 300:39–47

    CAS  Google Scholar 

  • Feng Y, Liu JH, Wu DL, Zhou ZY, Deng Y, Zhang T, Shih KM (2015) Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation. Chem Eng J 280:514–524

    CAS  Google Scholar 

  • Ferro S, Trentin AR, Caffieri S, Ghisi R (2010) Antibacterial sulfonamides: accumulation and effects in barley plants. Fresenius Environ Bull 19:2094–2099

    CAS  Google Scholar 

  • Fukahori S, Ito M, Fujiwara T (2018) Removal mechanism of sulfamethazine and its intermediates from water by a rotating advanced oxidation contactor equipped with TiO2–high-silica zeolite composite sheets. Environ Sci Pollut Res Int 25:29017–29025

    CAS  Google Scholar 

  • Gao YQ, Gao NY, Deng Y, Yang YQ, Ma Y (2012) Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem Eng J 195:248–253

    Google Scholar 

  • Gao YQ, Gao NY, Deng Y, Gu JS, Gu YL, Zhang D (2013) Factor affecting sonolytic degradation of sulfamethazine in water. Ultrason Sonochem 20:1401–1407

    CAS  Google Scholar 

  • Garcia-Galan MJ, Rodriguez-Rodriguez CE, Vicent T, Caminal G, Diaz-Cruz MS, Barcelo D (2011) Biodegradation of sulfamethazine by Trametes versicolor: removal from sewage sludge and identification of intermediate products by UPLC-QqTOF-MS. Sci Total Environ 409:5505–5512

    CAS  Google Scholar 

  • Garcia-Rodriguez A, Matamoros V, Fontas C, Salvado V (2013) The influence of light exposure, water quality and vegetation on the removal of sulfonamides and tetracyclines: a laboratory-scale study. Chemosphere 90:2297–2302

    CAS  Google Scholar 

  • Goeppert N, Dror I, Berkowitz B (2015) Fate and transport of free and conjugated estrogens during soil passage. Environ Pollut 206:80–87

    CAS  Google Scholar 

  • Gothwal R, Shashidhar T (2015) Antibiotic pollution in the environment: a review. Clean-Soil Air Water 43:479–489

    CAS  Google Scholar 

  • Hazhir N, Kiani F, Tahermansouri H, Ghorbani A, Saraei H, Koohyar F (2018) Prediction of thermodynamic and structural properties of sulfamerazine and sulfa-methazine in water using DFT and ab initio methods. J Mex Chem Soc 62:1–13

    CAS  Google Scholar 

  • Hirth N, Topp E, Dörfler U, Stupperich E, Munch J, Schroll R (2016) An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil. Chem Biol Technol Agric 3:29

    Google Scholar 

  • Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices—a review. J Environ Manag 92:2304–2347

    CAS  Google Scholar 

  • Hoskeri RS, Mulla SI, Ninnekar HZ (2014) Biodegradation of chloroaromatic pollutants by bacterial consortium immobilized in polyurethene foam and other matrices. Biocatal Agric Biotechnol 3:390–396

    Google Scholar 

  • Hou L, Yin G, Liu M, Zhou J, Zheng Y, Gao J, Zong H, Yang Y, Gao L, Tong C (2015) Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environ Sci Technol 49(1):326–333

    CAS  Google Scholar 

  • Ji Y, Shi Y, Wang L, Lu J, Ferronato C, Chovelon JM (2017) Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: formation of SO2 extrusion products and effects of natural organic matter. Sci Total Environ 593-594:704–712

    CAS  Google Scholar 

  • Kalaji HM, Rastogi A (2017) Pharmaceutical compounds: an emerging pollutant (a review on plant-pharmaceuticals interaction). Chiang Mai J Sci 44:287–297

    CAS  Google Scholar 

  • Karthikeyan KG, Meyer MT (2006) Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci Total Environ 361:196–207

    CAS  Google Scholar 

  • Kim DW, Thawng CN, Lee K, Wellington EMH, Chang-Jun Cha CJ (2019) A novel sulfonamide resistance mechanism by two-component flavindependent monooxygenase system in sulfonamide-degrading actinobacteria. Environ Int 127:206–215

    CAS  Google Scholar 

  • Kumar RR, Lee JT, Cho JY (2012) Fate, occurrence, and toxicity of veterinary antibiotics in environment. Appl Biol Chem 55:701–709

    CAS  Google Scholar 

  • Kurwadkar S, Struckhoff G, Pugh K, Singh O (2017) Uptake and translocation of sulfamethazine by alfalfa grown under hydroponic conditions. J Environ Sci 53:217–223

    CAS  Google Scholar 

  • Larcher S, Yargeau V (2012) Biodegradation of sulfamethoxazole: current knowledge and perspectives. Appl Microbiol Biotechnol 96:309–318

    CAS  Google Scholar 

  • Ledjeri A, Yahiaoui I, Kadji H, Aissani-Benissad F, Amrane A, Fourcade F (2017) Combination of the Electro/Fe3+/peroxydisulfate (PDS) process with activated sludge culture for the degradation of sulfamethazine. Environ Toxicol Pharmacol 53:34–39

    CAS  Google Scholar 

  • Lertpaitoonpan W, Moorman TB, Ong SK (2015) Effect of swine manure on sulfamethazine degradation in aerobic and anaerobic soils. Water Air Soil Pollut 226:81

    Google Scholar 

  • Li B, Zhang T (2011) Mass flows and removal of antibiotics in two municipal wastewater treatment plants. Chemosphere 83:1284–1289

    Google Scholar 

  • Li Y, Qiao X, Zhang YN, Zhou C, Xie H, Chen J (2016) Effects of halide ions on photodegradation of sulfonamide antibiotics: formation of halogenated intermediates. Water Res 102:405–412

    Google Scholar 

  • Li MK, Wang C, Yau ML, Bolton JR, Qiang ZM (2017) Sulfamethazine degradation in water by the VUV/UV process: kinetics, mechanism and antibacterial activity determination based on a mini-fluidic VUV/UV photoreaction system. Water Res 108:348–355

    CAS  Google Scholar 

  • Liu YK, Hu J, Wang JL (2014) Fe2+ enhancing sulfamethazine degradation in aqueous solution by gamma irradiation. Radiat Phys Chem 96:81–87

    CAS  Google Scholar 

  • Liu X, Huang F, Yu Y, Jiang Y, Zhao K, He Y, Xu Y, Zhang Y (2019) Determination and toxicity evaluation of the generated byproducts from sulfamethazine degradation during catalytic oxidation process. Chemosphere 226:103–109

    CAS  Google Scholar 

  • Liu Y, Wang J, Zhou Z, Zheng X, Zhao L, Yu A (2020) The degradation, biodegradability and toxicity evaluation of sulfamethazine antibiotics by gamma radiation. Open Chemistry 18:1188–1194

    CAS  Google Scholar 

  • Llorca M, Lucas D, Ferrando-Climent L, Badia-Fabregat M, Cruz-Morato C, Barcelo D, Rodriguez-Mozaz S (2016) Suspect screening of emerging pollutants and their major transformation products in wastewaters treated with fungi by liquid chromatography coupled to a high resolution mass spectrometry. J Chromatogr A 1439:124–136

    CAS  Google Scholar 

  • Mansour D, Fourcade F, Bellakhal N, Dachraoui M, Hauchard D, Amrane A (2012) Biodegradability improvement of sulfamethazine solutions by means of an electro-Fenton process. Water Air Soil Pollut 223:2023–2034

    CAS  Google Scholar 

  • Mansour D, Fourcade F, Huguet S, Soutrel I, Bellakhal N, Dachraoui M, Hauchard D, Amrane A (2014) Improvement of the activated sludge treatment by its combination with electro Fenton for the mineralization of sulfamethazine. Int Biodeterior Biodegradation 88:29–36

    CAS  Google Scholar 

  • Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S (2021) Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front Bioeng Biotechnol 9:632059

    Google Scholar 

  • Moore D (2015) Antibiotic classification and mechanism. J Retrieved August , 24

  • Mulla SI, Sun Q, Hu A, Wang Y, Ashfaq M, Eqani SAMAS, Yu C-P (2016) Evaluation of sulfadiazine degradation in three newly isolated pure bacterial cultures. PLoS One 11:e0165013

    Google Scholar 

  • Mulla SI, Ameen F, Tallur PN, Bharagava RN, Bangeppagari M, Eqani S, Bagewadi ZK, Mahadevan GD, Yu CP, Ninnekar HZ (2017) Aerobic degradation of fenvalerate by a Grampositive bacterium, Bacillus flexus strain XJU-4. 3. Biotech 7:320

  • Mulla SI, Hu A, Sun Q, Li J, Suanon F, Ashfaq M, Yu C-P (2018) Biodegradation of sulfamethoxazole in bacteria from three different origins. J Environ Manag 206:93–102

    CAS  Google Scholar 

  • Mulla SI, Ameen F, Talwar MP, Eqani SAMAS, Bharagava RN, Saxena G, Ninnekar HZ (2020a) Organophosphate pesticides: impact on environment, toxicity, and their degradation bioremediation of industrial waste for environmental safety. Springer, Berlin, pp 265–290

    Google Scholar 

  • Mulla SI, Asefi B, Bharagava RN, Saratale GD, Li J, Huang C-L, Yu, C.-P (2020b) Processes for the removal of triclosan in the environment and engineered systems—a review. Environ Rev 28:55-66

  • Nassar R, Trivella A, Mokh S, Al-Iskandarani M, Budzinski H, Mazellier P (2017) Photodegradation of sulfamethazine, sulfamethoxypiridazine, amitriptyline, and clomipramine drugs in aqueous media. J Photochem Photobiol A Chem 336:176–182

    CAS  Google Scholar 

  • Norvill ZN, Shilton A, Guieysse B (2016) Emerging contaminant degradation and removal in algal wastewater treatment ponds: identifying the research gaps. J Hazard Mater 313:291–309

    CAS  Google Scholar 

  • O’Neil MJ (2013) The Merck Index—an encyclopedia of chemicals, drugs and biologicals. Pp.1649 Royal Society of Chemistry, Cambridge, UK

  • Oliveira GHD, Santos-Neto AJ, Zaiat M (2017) Removal of the veterinary antimicrobial sulfamethazine in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor subjected to step changes in the applied organic loading rate. J Environ Manag 204:674–683

    CAS  Google Scholar 

  • Onesios KM, Yu JT, Bouwer EJ (2009) Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20:441–466

    CAS  Google Scholar 

  • Pan LJ, Tang XD, Li CX, Yu GW, Wang Y (2017) Biodegradation of sulfamethazine by an isolated thermophile-Geobacillus sp. S-07. World J Microbiol Biotechnol 33:85

    Google Scholar 

  • Pei RT, Kim SC, Carlson KH, Pruden A (2006) Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40:2427–2435

    CAS  Google Scholar 

  • Perez S, Eichhorn P, Aga DS (2005) Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ Toxicol Chem 24:1361–1367

    CAS  Google Scholar 

  • Poirier LA, Doerge DR, Gaylor DW, Miller MA, Lorentzen RJ, Casciano DA, Kadlubar FF, Schwetz BA (1999) An FDA review of sulfamethazine toxicity. Regul Toxicol Pharmacol 30:217–222

    CAS  Google Scholar 

  • Reel JR, Tyl RW, Lawton AD, Lamb JC (1992) Reproductive toxicity of sulfamethazine in Swiss CD-1 mice during continuous breeding. Fundam Appl Toxicol 18:609–615

    CAS  Google Scholar 

  • Reis PJM, Reis AC, Ricken B, Kolvenbach BA, Manaia CM, Corvini PFX, Nunes OC (2014) Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. J Hazard Mater 280:741–749

    CAS  Google Scholar 

  • Ren TT, Li XY, Wang Y, Zou YD, Liao XD, Liang JB, Wu YB (2017) Effect of different sulfadimidine addition methods on its degradation behaviour in swine manure. Environ Sci Pollut Res 24:7253–7263

    CAS  Google Scholar 

  • Ricken B, Kolvenbach BA, Bergesch C, Benndorf D, Kroll K, Strnad H, Vlček Č, Adaixo R, Hammes F, Shahgaldian P, Schäffer A, Kohler H-PE, Corvini PFX (2017) FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Sci Rep 7:15783

    Google Scholar 

  • Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360

    CAS  Google Scholar 

  • Rolbiecki D, Harnisz M, Korzeniewska E, Jałowiecki Ł, Płaza G (2020) Occurrence of fluoroquinolones and sulfonamides resistance genes in wastewater and sludge at different stages of wastewater treatment: a preliminary case study. Appl Sci 10:5816

    CAS  Google Scholar 

  • Saidi I, Soutrel I, Fourcade F, Amrane A, Floner D, Bellakhal N, Geneste F (2013) Flow electrolysis on high surface electrode for biodegradability enhancement of sulfamethazine solutions. J Electroanal Chem 707:122–128

    CAS  Google Scholar 

  • Saidi I, Fourcade F, Floner D, Soutrel I, Bellakhal N, Amrane A, Geneste F (2017) Sulfamethazine removal by means of a combined process coupling an oxidation pretreatment and activated sludge culture—preliminary results. Environ Technol 38:2684–2690

    CAS  Google Scholar 

  • Samy M, Ibrahim MG, Alalm MG, Fujii M (2020) Effective photocatalytic degradation of sulfamethazine by CNTs/LaVO4 in suspension and dip coating modes. Sep Purif Technol 235:116138

    CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    CAS  Google Scholar 

  • Seo Y-H, Cho B-O, Kang A-S, Jeong B-C, Jung Y-S (2010) Antibiotic uptake by plants from soil applied with antibiotic-treated animal manure. Korean J Soil Sci Fert 43:466–470

    Google Scholar 

  • Singer AC, Shaw H, Rhodes V, Hart A (2016) Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol 7:1728

    Google Scholar 

  • Snow DD, Cassada DA, Bartelt-Hunt SL, Li X, D'Alessio M, Zhang Y, Zhang YP, Sallach JB (2016) Detection, occurrence and fate of emerging contaminants in agricultural environments. Water Environ Res 88:913–929

    CAS  Google Scholar 

  • Tao WD, Zhang XX, Zhao FZ, Huang KL, Ma HJ, Wang Z, Ye L, Ren HQ (2016) High levels of antibiotic resistance genes and their correlations with bacterial community and mobile genetic elements in pharmaceutical wastewater treatment bioreactors. PLoS One 11:e0156854

    Google Scholar 

  • Topp E, Chapman R, Devers-Lamrani M, Hartmann A, Marti R, Martin-Laurent F, Sabourin L, Scott A, Sumarah M (2013) Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading Microbacterium sp. J Environ Qual 42:173–178

    CAS  Google Scholar 

  • Turcios AE, Papenbrock J (2019) Enzymatic degradation of the antibiotic sulfamethazine by using crude extracts of different halophytic plants. Int J Phytoremediation 21:1104–1111

    CAS  Google Scholar 

  • Wan Z, Wang J (2017) Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst. J Hazard Mater 324:653–664

    CAS  Google Scholar 

  • Wan Z, Hu J, Wang J (2016) Removal of sulfamethazine antibiotics using CeFe-graphene nanocomposite as catalyst by Fenton-like process. J Environ Manag 182:284–291

    CAS  Google Scholar 

  • Wang SL, Wang H (2015) Adsorption behavior of antibiotic in soil environment: a critical review. Front Env Sci Eng 9:565–574

    CAS  Google Scholar 

  • Wang N, Yang XH, Jiao SJ, Zhang J, Ye BP, Gao SX (2014) Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu Province, Southeastern China. PLoS One 9:e112626

    Google Scholar 

  • Xiong JQ, Govindwar S, Kurade MB, Paeng KJ, Roh HS, Khan MA, Jeon BH (2019a) Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus. Chemosphere 218:551–558

    CAS  Google Scholar 

  • Xiong JQ, Kim SJ, Kurade MB, Govindwar S, Abou-Shanab RAI, Kim JR, Roh HS, Khan MA., Jeon, B.H., 2019b. Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: toxicity, biodegradation, and metabolic fate. J Hazard Mater 370:138–146

  • Xu J, Sheng GP, Ma Y, Wang LF, Yu HQ (2013) Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system. Water Res 47:5298–5306

    CAS  Google Scholar 

  • Yang S, Hai FI, Nghiem LD, Price WE, Roddick F, Moreira MT, Magram SF (2013) Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol 141:97–108

    CAS  Google Scholar 

  • Yang N, Wan JF, Zhao SJ, Wang Y (2015) Removal of concentrated sulfamethazine by acclimatized aerobic sludge and possible metabolic products. PeerJ 3:e1359

    Google Scholar 

  • Yin XW, Qiang ZM, Ben WW, Pan X, Nie YF (2014) Biodegradation of sulfamethazine by activated sludge: lab-scale study. J Environ Eng 140:04014024

    Google Scholar 

  • Yonten V, Alp H, Yildirim N, Yildirim NC, Ogedey A (2017) Investigation of optimum conditions for efficient COD reduction in synthetic sulfamethazine solutions by Pleurotus eryngii var. ferulae using response surface methodology. J Taiwan Inst Chem Eng 80:349–355

    CAS  Google Scholar 

  • Yu TH, Lin AYC, Panchangam SC, Hong PKA, Yang PY, Lin CF (2011) Biodegradation and bio-sorption of antibiotics and non-steroidal anti-inflammatory drugs using immobilized cell process. Chemosphere 84:1216–1222

    CAS  Google Scholar 

  • Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of china: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49:6772–6782

    CAS  Google Scholar 

  • Zhou T, Wu XH, Zhang YR, Li JF, Lim TT (2013) Synergistic catalytic degradation of antibiotic sulfamethazine in a heterogeneous sonophotolytic goethite/oxalate Fenton-like system. Appl Catal B-Environ 136:294–301

    Google Scholar 

  • Zhou GJ, Ying GG, Liu S, Zhou LJ, Chen ZF, Peng FQ (2014) Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environ Sci Process Impacts 16:2018–2027

    CAS  Google Scholar 

  • Zhu G, Sun Q, Wang C, Yang Z, Xue Q (2019) Removal of sulfamethoxazole, sulfathiazole and sulfamethazine in their mixed solution by UV/H2O2 Process. Int J Environ Res Public Health 16:1797

    CAS  Google Scholar 

Download references

Funding

This study was supported by the Korea Ministry of Environment (MOE) as The Environmental Health Action Program under Project No. 2016001350005.

Author information

Authors and Affiliations

Authors

Contributions

Sikandar I. Mulla: conceptualization, visualization, writing—original draft, writing—review and editing

Zabin K. Bagewadi: writing–original draft–review and editing

Basheerabegum Faniband: writing–original draft–review and editing

Muhammad Bilal: writing–original draft–review and editing

Jong-Chan Chae: supervision, funding acquisition and editing

Paul Olusegun Bankole: review and editing

Ganesh Dattatraya Saratale: review and editing

Ram Naresh Bhargava: review and editing

Dummi Mahadevan Gurumurthy: conceptualization, visualization, writing–original draft, writing–review and editing

Corresponding authors

Correspondence to Sikandar I. Mulla or Dummi Mahadevan Gurumurthy.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulla, S.I., Bagewadi, Z.K., Faniband, B. et al. Various strategies applied for the removal of emerging micropollutant sulfamethazine: a systematic review. Environ Sci Pollut Res 30, 71599–71613 (2023). https://doi.org/10.1007/s11356-021-14259-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14259-w

Keywords

Navigation