Skip to main content
Log in

The global research trend on cadmium in freshwater: a bibliometric review

  • Circular Economy for Global Water Security
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium pollution turns out to be a global environmental problem. This study conducted a quantitative and qualitative bibliometric analysis based on 9188 research items from the Web of Science Core Collection published in the last 20 years (2000–2020), presenting an in-depth statistical investigation of global freshwater cadmium research progress and developing trend. Our results demonstrated that the researchers from China, the USA, and India contribute the most to this field. The primary sources of cadmium are mining, industry, wastewater, sedimentation, and agricultural activities. In developing countries, cadmium exposure occurs mainly through the air, freshwater, and food. Fish and vegetables are the main food sources of cadmium for humans because of their high accumulation capability. Source evaluation, detection, and remediation represent the main technologies used to clean up cadmium-contaminated sites. To mitigate the risk of cadmium contamination in freshwater, biomarker-based cadmium monitoring methods and integrated policies/strategies to reduce cadmium exposure merit further concern.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Secondary data was gathered from Scopus; data can be provided on request.

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M (2018a) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Google Scholar 

  • Abbas S, Rafatullah M, Hossain K, Ismail N, Tajarudin H, Khalil HA (2018b) A review on mechanism and future perspectives of cadmium-resistant bacteria. Int J Environ Sci Technol 15:243–262

    CAS  Google Scholar 

  • Adams W, Blust R, Dwyer R, Mount D, Nordheim E, Rodriguez PH, Spry D (2020) Bioavailability assessment of metals in freshwater environments: a historical review. Environ Toxicol Chem 39:48–59

    CAS  Google Scholar 

  • Akpor O, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. International Journal of Physical Sciences 5:1807–1817

    CAS  Google Scholar 

  • Ali H, Khan E (2019) Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal 25:1353–1376

    CAS  Google Scholar 

  • Alissa EM, Ferns GA (2011) Heavy metal poisoning and cardiovascular disease. Journal of toxicology 2011:1–21

    Google Scholar 

  • Amuno S, Shekh K, Kodzhahinchev V, Niyogi S (2020) Neuropathological changes in wild muskrats (Ondatra zibethicus) and red squirrels (Tamiasciurus hudsonicus) breeding in arsenic endemic areas of Yellowknife, Northwest Territories (Canada): arsenic and cadmium accumulation in the brain and biomarkers of oxidative stress. Sci Total Environ 704:135426

    CAS  Google Scholar 

  • Balistrieri LS, Mebane CA (2014) Predicting the toxicity of metal mixtures. Sci Total Environ 466:788–799

    Google Scholar 

  • Bello AO, Tawabini BS, Khalil AB, Boland CR, Saleh TA (2018) Phytoremediation of cadmium-, lead-and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol Eng 120:126–133

    Google Scholar 

  • Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P (2008) Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 43:184–195

    CAS  Google Scholar 

  • Borgert CJ, Quill TF, McCarty LS, Mason AM (2004) Can mode of action predict mixture toxicity for risk assessment? Toxicol Appl Pharmacol 201:85–96

    CAS  Google Scholar 

  • Bulat ZP, Đukić-Ćosić D, Đokić M, Bulat P, Matović V (2009) Blood and urine cadmium and bioelements profile in nickel-cadmium battery workers in Serbia. Toxicol Ind Health 25:129–135

    CAS  Google Scholar 

  • Cao Y, Liu H, Sun J, Liu Y, Jiang HS, Wang W, Li W (2019) Responses of propagule germination and sexual reproduction of submerged macrophytes exposed to cadmium. Chemosphere 219:436–443

    CAS  Google Scholar 

  • Chen H, Xu L, Ai W, Lin B, Feng Q, Cai K (2020) Kernel functions embedded in support vector machine learning models for rapid water pollution assessment via near-infrared spectroscopy. Sci Total Environ 714:136765

    CAS  Google Scholar 

  • Colzi I, Lastrucci L, Rangoni M, Coppi A, Gonnelli C (2018) Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive? J Environ Manag 213:320–328

    CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    CAS  Google Scholar 

  • De Acha N, Elosúa C, Corres JM, Arregui FJ (2019) Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors 19:599

    Google Scholar 

  • Dhaliwal SS, Singh J, Taneja PK, Mandal A (2020) Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environ Sci Pollut Res 27:1319–1333

    Google Scholar 

  • Dinakar N, Nagajyothi P, Suresh S, Damodharam T, Suresh C (2009) Cadmium induced changes on proline, antioxidant enzymes, nitrate and nitrite reductases in Arachis hypogaea L. J Environ Biol 30:289–294

    CAS  Google Scholar 

  • Ding J, Cherubini T, Yuan D, Bakker E (2019) Supported thin-layer ion transfer voltammetry for ion detection. Sensors Actuators B Chem 280:69–76

    CAS  Google Scholar 

  • Fang C, Achal V (2019) The potential of microbial fuel cells for remediation of heavy metals from soil and water—review of application. Microorganisms 7:697

    CAS  Google Scholar 

  • Feng Z, Zhu H, Deng Q, He Y, Li J, Yin J, Gao F, Huang R, Li T (2018) Environmental pollution induced by heavy metal (loid) s from pig farming. Environ Earth Sci 77:103

    Google Scholar 

  • Figoli A, Ursino C, Santoro S, Ounifi I, Chekir J, Hafiane A, Ferjani E (2020) Cellulose acetate nanofiltration membranes for cadmium remediation. Journal of Membrane Science and Research 6:226–234

    Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    CAS  Google Scholar 

  • Gaikwad MS, Balomajumder C (2016) Current progress of capacitive deionization for removal of pollutant ions. Electrochemical Energy Technology 2

  • Gao W, Wang X, Li P, Wu Q, Qi F, Wu S, Yu Y, Ding K (2016) Highly sensitive and selective detection of cadmium with a graphite carbon nitride nanosheets/Nafion electrode. RSC Adv 6:113570–113575

    CAS  Google Scholar 

  • Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17:3782

    CAS  Google Scholar 

  • Groh KJ, Carvalho RN, Chipman JK, Denslow ND, Halder M, Murphy CA, Roelofs D, Rolaki A, Schirmer K, Watanabe KH (2015a) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: II. A focus on growth impairment in fish Chemosphere 120:778–792

    CAS  Google Scholar 

  • Groh KJ, Carvalho RN, Chipman JK, Denslow ND, Halder M, Murphy CA, Roelofs D, Rolaki A, Schirmer K, Watanabe KH (2015b) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology Chemosphere 120:764–777

    CAS  Google Scholar 

  • Gunnlaugsson T, Lee TC, Parkesh R (2003) Cd (II) sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors. Org Lett 5:4065–4068

    CAS  Google Scholar 

  • Guo H, Jiang J, Gao J, Zhang J, Zeng L, Cai M, Zhang J (2020) Evaluation of cadmium hyperaccumulation and tolerance potential of Myriophyllum aquaticum. Ecotoxicol Environ Saf 195:110502

    CAS  Google Scholar 

  • Hayat MT, Nauman M, Nazir N, Ali S, Bangash N (2019) Environmental hazards of cadmium: past, present, and future, Cadmium Toxicity and Tolerance in Plants. Elsevier:163–183

  • Ho Y-S, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742

    CAS  Google Scholar 

  • Jiaxin S, Shengchen W, Yirong C, Shuting W, Shu L (2020) Cadmium exposure induces apoptosis, inflammation and immunosuppression through CYPs activation and antioxidant dysfunction in common carp neutrophils. Fish & Shellfish Immunology 99:284–290

    Google Scholar 

  • Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244

    CAS  Google Scholar 

  • Kubier A, Wilkin RT, Pichler T (2019) Cadmium in soils and groundwater: A review. Appl Geochem 108:104388

    CAS  Google Scholar 

  • Le MT, Hassanin M, Mahadeo M, Gailer J, Prenner EJ (2013) Hg-and Cd-induced modulation of lipid packing and monolayer fluidity in biomimetic erythrocyte model systems. Chem Phys Lipids 170:46–54

    Google Scholar 

  • Liu X, Zhang Y, Shi K, Lin J, Zhou Y, Qin B (2016) Determining critical light and hydrologic conditions for macrophyte presence in a large shallow lake: The ratio of euphotic depth to water depth. Ecol Indic 71:317–326

    CAS  Google Scholar 

  • Liu J, Yin M, Xiao T, Zhang C, Tsang DC, Zhou Y, Chen Y, Luo X, Yuan W, Wang J (2020a) Thallium isotopic fractionation in industrial process of pyrite smelting and environmental implications. J Hazard Mater 384:121378

    CAS  Google Scholar 

  • Liu N, Jiang Z, Li X, Liu H, Li N, Wei S (2020b) Mitigation of rice cadmium (Cd) accumulation by joint application of organic amendments and selenium (Se) in high-Cd-contaminated soils. Chemosphere 241:125106

    CAS  Google Scholar 

  • Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coord Chem Rev 356:147–164

    CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    CAS  Google Scholar 

  • Maddela NR, Kakarla D, García LC, Chakraborty S, Venkateswarlu K, Megharaj M (2020) Cocoa-laden cadmium threatens human health and cacao economy: a critical view. Sci Total Environ 720:137645

    CAS  Google Scholar 

  • Martinez-Pacheco M, Hidalgo-Miranda A, Romero-Cordoba S, Valverde M, Rojas E (2014) MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects. Gene 533:508–514

    CAS  Google Scholar 

  • Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol 78:6397–6404

    CAS  Google Scholar 

  • Mouvet C (1985) The use of aquatic bryophytes to monitor heavy metals pollution of freshwaters as illustrated by case studies: with 3 figures and 3 tables in the text. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 22:2420–2425

    CAS  Google Scholar 

  • Murithi G, Onindo CO, Wambu EW, Muthakia GK (2014) Removal of cadmium (II) ions from water by adsorption using water hyacinth (Eichhornia crassipes) biomass. BioResources 9:3613–3631

    Google Scholar 

  • Niu Y, Jiang X, Wang K, Xia J, Jiao W, Niu Y, Yu H (2020) Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Sci Total Environ 700:134509

    CAS  Google Scholar 

  • Okunola OJ, Oladipo MOA, Aker T, Popoola OB (2020) Risk assessment of drinkable water sources using gross alpha and beta radioactivity levels and heavy metals. Heliyon 6:e04668

    Google Scholar 

  • Pandey SK, Sachan S, Singh SK (2019) Ultra-trace sensing of cadmium and lead by square wave anodic stripping voltammetry using ionic liquid modified graphene oxide. Materials Science for Energy Technologies 2:667–675

    Google Scholar 

  • Pauna V, Buonocore E, Renzi M, Russo G, Franzese P (2019) The issue of microplastics in marine ecosystems: a bibliometric network analysis. Mar Pollut Bull 149:110612

    CAS  Google Scholar 

  • Pudza MY, Abidin ZZ, Abdul-Rashid S, Yasin FM, Noor ASM, Abdullah J (2020) Selective and simultaneous detection of cadmium, lead and copper by tapioca-derived carbon dot–modified electrode. Environ Sci Pollut Res 27:13315–13324

    CAS  Google Scholar 

  • Pulkka S, Martikainen M, Bhatnagar A, Sillanpää M (2014) Electrochemical methods for the removal of anionic contaminants from water–a review. Sep Purif Technol 132:252–271

    CAS  Google Scholar 

  • Qi L, Ma J, Song J, Li S, Cui X, Peng X, Wang W, Ren Z, Han M, Zhang Y (2017) The physiological characteristics of zebra fish (Danio rerio) based on metabolism and behavior: a new method for the online assessment of cadmium stress. Chemosphere 184:1150–1156

    CAS  Google Scholar 

  • Rahimzadeh MR, Rahimzadeh MR, Kazemi S, A-a M (2017) Cadmium toxicity and treatment: an update. Caspian journal of internal medicine 8:135

    Google Scholar 

  • Rajumon R, Aravind S, Bhuvaneshwari S, Ranjitha J, Mohanraj P (2020) Removal of cadmium heavy metal ions from wastewater by electrosorption using modified activated carbon felt electrodes. Water Sci Technol 82:1430–1444

    CAS  Google Scholar 

  • Sakan S, Dević G, Relić D, Anđelković I, Sakan N, Đorđević D (2015) Risk assessment of trace element contamination in river sediments in Serbia using pollution indices and statistical methods: a pilot study. Environ Earth Sci 73:6625–6638

    CAS  Google Scholar 

  • Sall ML, Fall B, Diédhiou I, Lo M, Diaw AKD, Gningue-Sall D, Raouafi N, Fall M (2020) Toxicity and electrochemical detection of lead, cadmium and nitrite ions by organic conducting polymers: a review. Chemistry Africa:1–14

  • Sandeep G, Vijayalatha K, Anitha T (2019) Heavy metals and its impact in vegetable crops. International Journal of Chemical Studies 7:1612–1621

    CAS  Google Scholar 

  • Shao X, Cheng H, Duan X, Lin C (2013) Concentrations and chemical forms of heavy metals in agricultural soil near the world’s largest and oldest tungsten mine located in China. Chem Speciat Bioavailab 25:125–132

    CAS  Google Scholar 

  • Sharma S, Dutta V, Raizada P, Hosseini-Bandegharaei A, Singh P, Nguyen V-H (2020) Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: a review. Environ Chem Lett:1–36

  • Shuhaimi-Othman M, Yakub N, Ramle N-A, Abas A (2015) Comparative toxicity of eight metals on freshwater fish. Toxicol Ind Health 31:773–782

    CAS  Google Scholar 

  • Soibinet M, Souchon V, Leray I, Valeur B (2008) Rhod-5N as a fluorescent molecular sensor of cadmium (II) ion. J Fluoresc 18:1077–1082

    CAS  Google Scholar 

  • Tan D, Zhu J-M, Wang X, Han G, Lu Z, Xu W (2020) High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS. J Anal At Spectrom 35:713–727

    CAS  Google Scholar 

  • Tanaka N, Uraguchi S, Kajikawa M, Saito A, Ohmori Y, Fujiwara T (2018) A rice PHD-finger protein Os TITANIA, is a growth regulator that functions through elevating expression of transporter genes for multiple metals. Plant J 96:997–1006

    CAS  Google Scholar 

  • Tarekegn MM, Salilih FZ, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food & Agriculture 6:1783174

    Google Scholar 

  • Tharakeswar Y, Kalyan Y, Gangadhar B, Kumar KS, Naidu GR, Gurijala R (2012) Optical chemical sensor for screening cadmium (II) in natural waters. J Sens Technol 2:68–74

    CAS  Google Scholar 

  • ur Rehman MZ, Zafar M, Waris AA, Rizwan M, Ali S, Sabir M, Usman M, Ayub MA, Ahmad Z (2020) Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. Chemosphere 244:125548

    Google Scholar 

  • Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538

    Google Scholar 

  • Velazquez-Jimenez LH, Pavlick A, Rangel-Mendez JR (2013) Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind Crop Prod 43:200–206

    CAS  Google Scholar 

  • Vidu R, Matei E, Predescu AM, Alhalaili B, Pantilimon C, Tarcea C, Predescu C (2020) Removal of heavy metals from wastewaters: a challenge from current treatment methods to nanotechnology applications. Toxics 8:101

    CAS  Google Scholar 

  • Vikrant K, Kumar V, Vellingiri K, Kim K-H (2019) Nanomaterials for the abatement of cadmium (II) ions from water/wastewater. Nano Res 12:1489–1507

    CAS  Google Scholar 

  • Vilas-Boas JA, Cardoso SJ, MVX S, Rico A, RJP D (2020) Ciliates as model organisms for the ecotoxicological risk assessment of heavy metals: a meta–analysis. Ecotoxicol Environ Saf 199:110669

    CAS  Google Scholar 

  • Wang J, Jiang Y, Sun J, She J, Yin M, Fang F, Xiao T, Song G, Liu J (2020a) Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotoxicol Environ Saf 196:110529

    CAS  Google Scholar 

  • Wang L, Gao Y, Wang X, Qin Z, Liu B, Zhang X, Wang G (2020b) Warming enhances the cadmium toxicity on macrophyte Myriophyllum aquaticum (Vell.) Verd. seedlings. Environ Pollut:115912

  • Wiggenhauser M, Bigalke M, Imseng M, Keller A, Rehkämper M, Wilcke W, Frossard E (2019) Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems. Sci Total Environ 648:779–786

    CAS  Google Scholar 

  • Wu J-P, Li M-H (2018) The use of freshwater planarians in environmental toxicology studies: advantages and potential. Ecotoxicol Environ Saf 161:45–56

    CAS  Google Scholar 

  • Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23:8244–8259

    CAS  Google Scholar 

  • Yan Y, Li Q, Yang J, Zhou S, Wang L, Bolan N (2020) Evaluation of hydroxyapatite derived from flue gas desulphurization gypsum on simultaneous immobilization of lead and cadmium in contaminated soil. J Hazard Mater 400:123038

    CAS  Google Scholar 

  • Yang Y, Xiong J, Tao L, Cao Z, Tang W, Zhang J, Yu X, Fu G, Zhang X, Lu Y (2020) Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: a review. Sci Total Environ 708:135186

    CAS  Google Scholar 

  • Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B (2013) Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.). International Journal of Phytoremediation 15:513–521

    CAS  Google Scholar 

  • Yuan G, Dai S, Yin Z, Lu H, Jia R, Xu J, Song X, Li L, Shu Y, Zhao X (2014) Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats. Food Chem Toxicol 65:260–268

    CAS  Google Scholar 

  • Yuan Z, Luo T, Liu X, Hua H, Zhuang Y, Zhang X, Zhang L, Zhang Y, Xu W, Ren J (2019) Tracing anthropogenic cadmium emissions: from sources to pollution. Sci Total Environ 676:87–96

    CAS  Google Scholar 

  • Zhang H, Reynolds M (2019) Cadmium exposure in living organisms: a short review. Sci Total Environ 678:761–767

    CAS  Google Scholar 

  • Zhang L, Huang X, Cao Y, Xin Y, Ding L (2017) Fluorescent binary ensemble based on pyrene derivative and sodium dodecyl sulfate assemblies as a chemical tongue for discriminating metal ions and brand water. ACS sensors 2:1821–1830

    CAS  Google Scholar 

  • Zhang A, Li X, Xing J, Xu G (2020a) Adsorption of potentially toxic elements in water by modified biochar: a review. Journal of Environmental Chemical Engineering:104196

  • Zhang Y, Liu Q, Yin H, Li S (2020b) Cadmium exposure induces pyroptosis of lymphocytes in carp pronephros and spleens by activating NLRP3. Ecotoxicol Environ Saf 202:110903

    CAS  Google Scholar 

  • Zhao Y, Deng Q, Lin Q, Zeng C, Zhong C (2020) Cadmium source identification in soils and high-risk regions predicted by geographical detector method. Environ Pollut 263:114338

    CAS  Google Scholar 

  • Zhong Q, Zhou Y, Tsang DC, Liu J, Yang X, Yin M, Wu S, Wang J, Xiao T, Zhang Z (2020) Cadmium isotopes as tracers in environmental studies: a review. Sci Total Environ 736:139585

    CAS  Google Scholar 

Download references

Funding

This work was partially supported by the National Key R&D Program of China (Grant No. 2019YFC1407800) and the Natural Science Foundation of Tianjin City (Grant No. 19YFZCSN01130).

Author information

Authors and Affiliations

Authors

Contributions

Investigation, data curation, writing—original draft: Muhammad Irfan; conceptualization, supervision, writing—review and editing: Xianhua Liu; methodology and investigation: Khalid Hussain; formal analysis and investigation: Suraya Mushtaq; formal analysis and investigation: Jonnathan Cabrera; conceptualization, writing—review and editing: Pingping Zhang.

Corresponding author

Correspondence to Xianhua Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Xianliang Yi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Liu, X., Hussain, K. et al. The global research trend on cadmium in freshwater: a bibliometric review. Environ Sci Pollut Res 30, 71585–71598 (2023). https://doi.org/10.1007/s11356-021-13894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13894-7

Keywords

Navigation