Skip to main content

Advertisement

Log in

Genotoxic and melanic alterations in Lithobates catesbeianus (anura) tadpoles exposed to fipronil insecticide

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the genotoxic and morphological systemic effects of both an acute and a chronic exposure of bullfrog tadpoles to fipronil. Lithobates catesbeianus tadpoles had morphological biomarkers (skin, liver, and blood) analyzed at Gosner stages 36–38, when exposed to four different concentrations of Regent® 800 WG (80% fipronil): 0.00 (control), 0.04, 0.08, 0.4 mg/L, and four experimental times: 4, 8, 12, and 16 days. Body darkness responded directly to the treatment and exposure time. There was a treatment-dependent decrease in darkness of heads and tails. In relation to the biometric analysis, fipronil induced a decrease in the individual weight and liver mass at the end of the experiments, whereas the hepatosomatic index did not vary according to the treatment. For the exposed animals and for the control group, the area of hepatic melanin increased as exposure time increased. Fipronil has genotoxic effects on L. catesbeianus tadpoles even after short exposure times (e.g., 4 and 8 days), and the main nuclear abnormality is in the anucleate cells. A relevant correlation was observed between genotoxic biomarkers and cutaneous and internal melanin. The frequency of nuclear abnormalities is inversely correlated both with the hepatic melanin area and with the cutaneous melanin of animals. Fipronil has distinct systemic effects on tadpoles based on its concentration, as well as on its exposure time. Such alterations (pigmentation level and rate of erythrocyte abnormality) result in morphological and physiological effects, which may compromise the behavior and survival of the anurans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agius C (1980) Phylogenetic development of melano-macrophage centres in fish. J Zool 191:11–31

    Article  Google Scholar 

  • Agius C, Roberts RJ (2003) Review: melano-macrophage centres and their role in fish pathology. J Fish Biol 26:499–509. https://doi.org/10.1046/j.1365-2761.2003.00485.x

    Article  CAS  Google Scholar 

  • Agrofit (2020) Sistema de Agrotóxicos Fitossanitários. Regent 800 WG: Relatório de produtos formulados. Ministério da Agricultura. Pecuária e Abastecimento. Brasília, 3p

  • Albuquerque AF, Ribeiro JS, Kummrow F, Nogueira AJA, Montagner CC, Umbuzeiro GA (2016) Pesticides in Brazilian freshwaters: a critical review. Environ Sci Process Impacts 18:779–787. https://doi.org/10.1039/C6EM00268D

    Article  CAS  Google Scholar 

  • Allen TD, Awasthi A, Rana SVS (2004) Fish chromatophores as biomarkers of arsenic exposure. Environ Biol Fish 71:7–11. https://doi.org/10.1023/B:EBFI.0000043145.58953.86

    Article  Google Scholar 

  • Amaral RB (2012) Investigação do comportamento eletroquímico do inseticida fipronil e desenvolvimento de metodologia eletroanalítica. Thesis, Universidade de São Paulo, São Carlos

  • Ambali SF, Ayo JO, Kan E, Ojo SA (2011) Hemotoxicity induced by chronic chlorpyrifos exposure in Wistar rats: mitigating effect of vitamin C. Vet Med Int. https://doi.org/10.4061/2011/945439

  • Anvisa ((2019)) Agência Nacional de Vigilância Sanitária. Accessed 12 October 2020

  • Aspengren S, Hedberg D, Sköld HN, Wallin M (2009) New insights into melanossome transport in vertebrate pigment cells. Int Rev Cell Mol Biol 272:245–302. https://doi.org/10.1016/S1937-6448(08)01606-7

    Article  CAS  Google Scholar 

  • Bach NC, Marino DJG, Natale GS, Somoza GM (2018) Effects of glyphosate and its commercial formulation, Roundup® Ultramax, on liver histology of tadpoles of the neotropical frog, Leptodactylus latrans (Amphibia: Anura). Chemosphere 202:289–297. https://doi.org/10.1016/j.chemosphere.2018.03.110

    Article  CAS  Google Scholar 

  • Barni S, Bertone V, Croce AC, Bottiroli G, Bernini F, Gerzeli G (1999) Increase in liver pigmentation during natural hibernation in some amphibians. J Anat 195:19–25. https://doi.org/10.1046/j.1469-7580.1999.19510019.x

    Article  Google Scholar 

  • Bernabò I, Guardia A, Macirella R, Sesti S, Crescente A, Brunelli E (2016) Effects of long-term exposure to two fungicides, pyrimethanil andtebuconazole, on survival and life history traits of Italian tree frog (Hyla intermedia). Aquat Toxicol 172:56–66. https://doi.org/10.1016/j.aquatox.2015.12.017

    Article  CAS  Google Scholar 

  • Boone MD (2008) Examining the single and interactive effects of three insecticides on amphibian metamorphosis. Environ Toxicol Chem 27:1561–1568. https://doi.org/10.1897/07-520.1

    Article  CAS  Google Scholar 

  • Boscolo CNP, Felício AA, Pereira TSB, Margarido TCS, Rossa-Feres DC, Almeida EA, Freitas JS (2017) Comercial insecticide fipronil alters antioxidant enzymes response and accelerates the metamorphosis in Physalaemus nattereri (Anura: Leiuperidae) tadpoles. Eur J Zool Res 5:1–7

    CAS  Google Scholar 

  • Brodeur JC, Candioti JV (2017) Impacts of agriculture and pesticides on amphibian terrestrial life stages: potential biomonitor/bioindicator species for the pampa region of Argentina. In: Larramendy ML (ed) Ecotoxicology and genotoxicology: non-traditional terrestrial models. Royal Society of Chemistry, Cambridge, pp 163–194

    Chapter  Google Scholar 

  • Brunelli E, Bernabò I, Berg C, Lundstedt-Enkel K, Bonacci A, Tripepi S (2009) Environmental relevant concentrations of endosulfan impair development, metamorphosis and behavior in Bufo bufo tadpoles. Aquat Toxicol 91:135–142. https://doi.org/10.1016/j.aquatox.2008.09.006

    Article  CAS  Google Scholar 

  • Çakici Ö (2015) Histopathologic changes in liver and kidney tissues induced by carbaryl in Bufotes variabilis (Anura: Bufonidae). Exp Toxicol Pathol 67:237–243. https://doi.org/10.1016/j.etp.2014.12.003

    Article  CAS  Google Scholar 

  • Cauble K, Wagner RS (2005) Sublethal effects of the herbicide glyphosate on amphibian metamorphosis and development. Bull Environ Contam Toxicol 75:429–435

    Article  CAS  Google Scholar 

  • Césarini JP (1996) Melanins and their possible roles through biological evolution. Adv Space Res 18:35–40. https://doi.org/10.1016/0273-1177(96)00025-7

    Article  Google Scholar 

  • Daiwile AP, Naoghare PK, Giripunje MD, Rao PP, Ghosh TK, Krishnamurthi K, Sivanesan S (2015) Correlation of melanophore index with a battery of functional genomic stress indicators for measurement of environmental stress in aquatic ecosystem. Environ Toxicol Pharmacol 39:486–495. https://doi.org/10.1016/j.etap.2014.12.006

    Article  CAS  Google Scholar 

  • De Oliveira C, Franco-Belussi L, Fanali LZ, Santos LR (2017) Use of melanin-pigmented cells as a new tool to evaluate effects of agrochemicals and other emerging contaminants in Brazilian anurans. Section II: terrestrial vertebrates as experimental models. In: Larramendy ML (ed) Ecotoxicology and genotoxicology: non-traditional terrestrial models. Royal Society of Chemistry, Cambridge, pp 125–139

    Google Scholar 

  • Denver RJ, Crespi EJ (2006) Stress hormones and human development plasticity: lessons from tadpoles. NeoReviews 7:183–188. https://doi.org/10.1542/neo.7-4-e183

    Article  Google Scholar 

  • Fanali LZ, Valverde BSL, Franco-Belussi L, Provete DB, Oliveira C (2017) Response of digestive organs of Hypsiboas albopunctatus (Anura: Hylidae) to benzo[a]pyrene. Amphibia-Reptilia 38:175–185. https://doi.org/10.1163/15685381-00003101

    Article  Google Scholar 

  • Fanali LZ, Franco-Belussi L, Bonini-Domingos CR, Oliveira C (2018) Effects of benzo[a]pyrene on the blood and liver of Physalaemus cuvieri and Leptodactylus fuscus (Anura: Leptodactylidae). Environ Pollut 237:93–102. https://doi.org/10.1016/j.envpol.2018.02.030

    Article  CAS  Google Scholar 

  • Fent GM (2014) Fipronil. Encyclopedia of toxicology, 3rd edn, 2:596-597

  • Ferreira M, Oliveira PR, Denardi SE, Bechara GH, Mathias MIC (2012) Action of the chemical agent fipronil (active ingredient of acaricide frontline1) on the liver of mice: an ultrastructural analysis. Microsc Res Tech 75:197–205

    Article  CAS  Google Scholar 

  • Foit A, Chatzinotas M, Liess K (2010) Short-term disturbance of a grazer has long-term effects on bacterial communities-relevance of trophic interactions for recovery from pesticide effects. Aquat Toxicol 99:205–211. https://doi.org/10.1016/j.aquatox.2010.04.019

    Article  CAS  Google Scholar 

  • Franco-Belussi L, Skold HN, Oliveira C (2016) Internal pigment cells respond to external UV radiation in frogs. J Exp Biol 219:1378–1283. https://doi.org/10.1242/jeb.134973

    Article  Google Scholar 

  • Franco-Belussi L, Nilsson Sköld H, De Oliveira C (2018) Regulation of eye and jaw colouration in three-spined stickleback (Gasterosteus aculeatus). J Fish Biol 92:1788–1804. https://doi.org/10.1111/jfb.13620

    Article  CAS  Google Scholar 

  • Franco-Belussi L, Provete DB, Borges RE, De Oliveira C, Santos LRS (2020) Idiosyncratic liver pigment alterations of five frog species in response to contrasting land use patterns in the Brazilian Cerrado. PeerJ 8:e9751

    Article  Google Scholar 

  • Fredianelli AC, Pierin VH, Uhlig SC, Galeb LAG, Rocha DCC, Ribeiro DR, Anater A, Pimpão CT (2019) Hematologic, biochemical, genetic, and histological biomarkes for the evaluation of the toxic effects of fipronil for Rhamdia quelen. Turk J Vet An Sci 43:54–59

    Article  CAS  Google Scholar 

  • Ghisi NC, Ramsdorf WA, Ferraro MVM, De Almeida MIM, De Oliveira Ribeiro CA, Cestari MM (2011) Evaluation of genotoxicity in Rhamdia quelen (Pisces, Siluriformes) after sub-chronic contamination with Fipronil. Environ Monit Assess 180:589–599. https://doi.org/10.1007/s10661-010-1807-7

    Article  CAS  Google Scholar 

  • Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22:103–118. https://doi.org/10.1007/s11356-014-3180-5

    Article  CAS  Google Scholar 

  • Gregorio LS, Franco-Belussi L, Gomes FR, De Oliveira C (2016) Flutamide effects on morphology of reproductive organs and liver of Neotropical Anura, Rhinella schneideri. Aquat Toxicol 176:181–189. https://doi.org/10.1016/j.aquatox.2016.04.022

    Article  CAS  Google Scholar 

  • Gripp HS, Freitas JS, Almeida EA, Bisnoti MC, Moreira AB (2017) Biochemical effects of fipronil and is metabolites on lipid peroxidation and enzymatic antioxidan defense in tadpoles (Eupemphix natteteri: Leiuperidae). Ecotoxicol Environ Saf 136:173–179. https://doi.org/10.1016/j.ecoenv.2016.10.027

    Article  CAS  Google Scholar 

  • Hildenbrandt A, Guillamon M, Lacore S, Tauler R, Barcelo D (2008) Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Res 42:3315–3326. https://doi.org/10.1016/j.watres.2008.04.009

    Article  CAS  Google Scholar 

  • Josende ME, Tozetti AM, Alalan MT, Mathies Filho V, Ximenez SS, Silva Júnior FMR, Martins SE (2015) Genotoxic evaluation in two amphibian species from Brazilian subtropical wetlands. Ecol Indic 49:83–87. https://doi.org/10.1016/j.ecolind.2014.10.007

    Article  CAS  Google Scholar 

  • Konstantinou LK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141:555–570. https://doi.org/10.1016/j.envpol.2005.07.024

    Article  CAS  Google Scholar 

  • Lopes CVA, Albuquerque GSCD (2018) Agrotóxicos e seus impactos na saúde humana e ambiental: uma revisão sistemática. Saúde em debate 42:518–534

    Article  Google Scholar 

  • Lüdecke D (2016) sjPlot: data visualization for statistics in social science. R package version 2.1.2. Available from: https://CRAN.R-project.org/package=sjPlot

  • Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157:2903–2927. https://doi.org/10.1016/j.envpol.2009.05.015

    Article  CAS  Google Scholar 

  • Margarido TCS, Felício AA, Rossa-Feres DC, Almeida EA (2013) Biochemical biomarkers in Scinax fuscovarius tadpoles exposed to a commercial formulation of the pesticide fipronil. Mar Environ Res 91:61–67. https://doi.org/10.1016/j.marenvres.2013.02.001

    Article  CAS  Google Scholar 

  • MMA - Ministério do Meio Ambiente, Brasil (2018) Agrotóxicos. Accessed 15 February 2020

  • Montagna W, Carlisle K (1991) The architecture of black and white facial skin. J Am Acad Dermatol 24:929–937. https://doi.org/10.1016/0190-9622(91)70148-U

    Article  CAS  Google Scholar 

  • Oliveira CR, Fraceto LF, Rizzi GM, Salla RF, Abdalla FC, Costa MJ, Silva Zacarin ECM (2016) Hepatic effects of the clomazone herbicide in both its free form and associated with chitosan-alginate nanoparticles in bullfrog tadpoles. Chemosphere 149:304–313. https://doi.org/10.1016/j.chemosphere.2016.01.076

    Article  CAS  Google Scholar 

  • Pandey AK, Tomar V (1985) Melanophores in Bufo melanostictus (Schneider) tadpoles following exposure to the insecticide dimethoate. Bull Environ Contam Toxicol 35:796–801. https://doi.org/10.1007/BF01636590

    Article  CAS  Google Scholar 

  • Pérez-Iglesias JM, Franco-Belussi L, Moreno L, Tripole S, Oliveira C, Natale GS (2016) Effect of glyphosate on hepatic tissue evaluating melanomacrophages and erythrocytes responses in neotropical anuran Leptodactylus latinasus. Environ Sci Pollut Res 23:9852–9861. https://doi.org/10.1007/s11356-016-6153-z

    Article  CAS  Google Scholar 

  • Pérez-Iglesias JM, Franco-Belussi L, Natale GS, Oliveira C (2019) Biomarkes at different levels of organisation after atrazine formulation (SIPTRAN 500SC®) exposure in Rhinella schineideri (Anura: Bufonidae) Neotropical tadpoles. Environ Pollut 244:733–746. https://doi.org/10.1016/j.envpol.2018.10.073

    Article  CAS  Google Scholar 

  • Pochini KM, Hoverman JT (2017) Reciprocal effects of pesticides and pathogens on amphibian hosts: the importance of exposure order and timing. Environ Pollut 221:359–366. https://doi.org/10.1016/j.envpol.2016.11.086

    Article  CAS  Google Scholar 

  • Provete DB, Franco-Belussi L, Santos LRS, Zieri R, Moresco RM, Martins IA, De Oliveira C (2012) Phylogenetic signal and variation of visceral pigmentation in eight anuran families. Zool Scr 41:547–556

    Article  Google Scholar 

  • Qureshi IZ, Bibi A, Shahid S, Ghazanfar M (2016) Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L.). Aquat Toxicol 179:103–114. https://doi.org/10.1016/j.aquatox.2016.08.012

    Article  CAS  Google Scholar 

  • R Core Team (2017) R: a language for and environment for statistical computing, version 3.4.0

  • Regnault C et al (2014) Impaired liver function in Xenopus tropicalis exposed to benzo[a]pyrene: transcriptomic and metabolic evidence. BMC Genomics 15:666–681

  • Reynaud S, Worms IAM, Veyrenc S, Portier J, Maitre A, Miaud C, Raveton M (2012) Toxicokinetic of benzo[a]pyrene and fipronil in female green frogs (Pelophlax kl. esculentus). Environ Pollut 161:206–214. https://doi.org/10.1016/j.envpol.2011.10.029

    Article  CAS  Google Scholar 

  • Ribeiro ACA, Dores EFGC, Amorim RSS, Lourencetti C (2013) Resíduos de pesticidas em águas superficiais de área de nascente do rio São Lourenço-MT: validação de método por 72 extração em fase sólida e cromatografia líquida. Quím Nova 36

  • Roberts JR, Reigart JR (2013) Recognition and management of pesticide poisonings, 6th edn. USEPA, Washington 227 p

  • Rutkoski CF, Macagnan N, Folador A, Skovronski VJ, do Amaral AM, Leitemperger JW, Hartmann MT (2020) Cypermethrin-and fipronil-based insecticides cause biochemical changes in Physalaemus gracilis tadpoles. Environ Sci Pollut Res:1–11. https://doi.org/10.1007/s11356-020-10798-w

  • Santos LRS, Franco-Belussi L, Zieri R, Borges RE, Oliveira C (2014) Effects of thermal stress on hepatic melanomacrophages of Eupemphix nattereri (Anura). Anat Rec 297:864–875. https://doi.org/10.1002/ar.22884

    Article  Google Scholar 

  • Scaia MF, Gregorio LS, Franco-Belussi L, Succi-Domingues M, Oliveira C (2019) Gonadal, body color, and genotoxic alterations in Lithobates catesbeianus tadpoles exposed to nonylphenol. Environ Sci Pollut Res 26:22209–22219. https://doi.org/10.1007/s11356-019-05403-8

    Article  CAS  Google Scholar 

  • Shaw G (1802) General zoology or systematic natural history. Volume III, Part 1. Amphibia. Thomas Davison, London

  • Silva MS, Concenza DS, Grillo R, Melo NFS, Tonello PS, Oliveira LC, Cassimiro DL, Rosa AH, Fraceto LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard 190:366–374. https://doi.org/10.1016/j.jhazmat.2011.03.057

    Article  CAS  Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Goulson D (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22:5–34. https://doi.org/10.1007/s11356-014-3470-y

    Article  CAS  Google Scholar 

  • Sköld HN, Aspengren S, Cheney KL, Wallin M (2016) Fish chromatophores—from molecular motors to animal behavior. Int Rev Cell Mol Biol 321:171–219. https://doi.org/10.1016/bs.ircmb.2015.09.005

    Article  CAS  Google Scholar 

  • Svensson C, Kundzewicz WZ, Maurer T (2005) Trend detection in river flow series: 2. Flood and low-flow index series. Hydrol Sci J 50:811–824. https://doi.org/10.1623/hysj.2005.50.5.811

    Article  Google Scholar 

  • Thompson T, Fawell J, Kunikane S, Jackson D, Appleyard S, Callan P (2007) Chemical safety of drinking water: assessing priorities for risk management. WHO World Health Organization

  • Toffoli AL, da Mata K, Bisinoti MC, Moreira AB (2015) Development, validation, and application of a method for the GC-MS analysis of fipronil and three of its degradation products in samples of water, soil, and sediment. J Environ Sc Healt B 50:753–759. https://doi.org/10.1080/03601234.2015.1058091

    Article  CAS  Google Scholar 

  • Tomiazzi JS, Judai MA, Nai GA, Pereira DR, Antunes PA, Favareto APA (2018) Evaluation of genotoxic effects in Brazilian agricultural workers exposed to pesticides and cigarette smoke using machine-learning algorithms. Environ Sci Pollut Res 25:1259–1269. https://doi.org/10.1007/s11356-017-0496-y

    Article  CAS  Google Scholar 

  • Wagner N, Müller H, Viertel B (2016) Effects of a commonly used glyphosate based herbicide formulation on early developmental stages of two anuran species. Environ Sci Pollut Res 24:1495–1508. https://doi.org/10.1007/s11356-016-7927-z

    Article  CAS  Google Scholar 

  • Zhao X, Salgado VL (2010) The role of GABA and glutamate receptors in susceptibility and resistance to chloride channel blocker insecticides. Pestic Biochem Physiol 97:153–160. https://doi.org/10.1016/j.pestbp.2009.10.002

    Article  CAS  Google Scholar 

  • Zieri R, Franco-Belussi L, Santos LRS, Taboga SR, Oliveira C (2015) Sex hormones change visceral pigmentation in Eupemphix nattereri (Anura): effects in testicular melanocytes and hepatic melanomacrophages. Anim Biol 65:21–32. https://doi.org/10.1163/15707563-00002457

    Article  Google Scholar 

  • Zuasti A, Jara JR, Ferre C, Solano F (1989) Occurrence of melanin granules and melanosynthesis in the kidney of Sparus auratus. Pigment Cell Res 2:93–100. https://doi.org/10.1111/j.1600-0749.1989.tb00168.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Lara S. Gregorio, Lara Z. Fanali, Maysa S. Domingues, and Luciana Trevizan helped with experimental procedures.

Funding

CO has been continuously supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (# 304552/2019-4) and BSLV received a CAPES-DS scholarship. This study was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) (grant # 2018/01078-7) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES) (Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

ATS: investigation, methodology. BSLV: conceptualization, investigation, methodology, writing original draft, and review. LFB: conceptualization, methodology, formal analysis, writing original draft, and review and editing. CO: conceptualization, resources, writing original draft, and review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Classius De Oliveira.

Ethics declarations

Ethical approval

All manipulation and care of animal’s procedures were previously approved by the Ethical Committee and Animal Experimentation from IBILCE/UNESP (CEUA #199/2018).

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 49 kb)

ESM 2

(PDF 40 kb)

ESM 3

(PDF 41 kb)

ESM 4

(PDF 38 kb)

ESM 5

(PDF 40 kb)

ESM 6

(PDF 47 kb)

ESM 7

(PDF 48 kb)

ESM 8

(PDF 48 kb)

ESM 9

(PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.T., Valverde, B.S.L., De Oliveira, C. et al. Genotoxic and melanic alterations in Lithobates catesbeianus (anura) tadpoles exposed to fipronil insecticide. Environ Sci Pollut Res 28, 20072–20081 (2021). https://doi.org/10.1007/s11356-020-11948-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11948-w

Keywords

Navigation