Skip to main content
Log in

Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Water is a vital substance that constitutes biological structures and sustains life. However, water pollution is currently among the major environmental challenges and has attracted increasing study attention. How to handle contaminated water now mainly focuses on removing or reducing the pollutants from the wastewater. Cyclodextrin derivatives, possessing external hydrophilic and internal hydrophobic properties, have been recognized as new-generation adsorbents to exert positive effects on water pollution treatment. This article outlines recent contributions of cyclodextrin-based adsorbents on wastewater treatment, highlighting different adsorption mechanisms of cyclodextrin-based adsorbents under different influencing factors. The crosslinked and immobilized cyclodextrin-based adsorbents all displayed outstanding adsorption capacities. Particularly, according to specific pollutants including metal ions, organic chemicals, pesticides, and drugs in wastewater, this article has classified and organized various cyclodextrin-based adsorbents into tables, which could pave an intuitive shortcut for designing and developing efficient cyclodextrin-based adsorbents for targeted wastewater pollutants. Besides, this article specially discusses cost-effectiveness and regeneration performance of current cyclodextrin-based adsorbents. Finally, the challenges and future directions of cyclodextrin-based adsorbents are prospected in this article, which may shed substantial light on practical industrial applications of cyclodextrin-based adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable

References

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y et al (2002) Aquaporin water channels-from atomic structure to clinical medicine. J Physiolo-London 542:3–16

    CAS  Google Scholar 

  • Ahmed MJK, Ahmaruzzaman M (2016) A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J Water Process Eng 10:39–47

    Google Scholar 

  • Ali AS, El-Aassar MR, Hashem FS, Moussa NA (2019) Surface modified of cellulose acetate electrospun nanofibers by polyaniline/β-cyclodextrin composite for removal of cationic dye from aqueous medium. Fiber Polym 20:2057–2069

    CAS  Google Scholar 

  • Alzate-Sánchez DM, Smith BJ, Alsbaiee A, Hinestroza JP, Dichtel WR (2016) Cotton fabric functionalized with a β-cyclodextrin polymer captures organic pollutants from contaminated air and water. Chem Mater 28:8340–8346

    Google Scholar 

  • Alzate-Sánchez DM, Ling Y, Li C, Frank BP, Bleher R, Fairbrother DH et al (2019) β-Cyclodextrin polymers on microcrystalline cellulose as a granular media for organic micropollutant removal from water. ACS Appl Mater Interfaces 11:8089–8096

    Google Scholar 

  • Anceschi A, Caldera F, Bertasa M, Cecone C, Trotta F, Bracco P et al (2020) New poly (β-cyclodextrin)/poly (vinyl alcohol) electrospun sub-micrometric fibers and their potential application for wastewater treatments. Nanomaterials 10:482–496

    CAS  Google Scholar 

  • Ares AM, Muiño R, Costoya A, Lorenzo RA, Concheiro A, Carro AM, Alvarez-Lorenzo C (2019) Cyclodextrin-functionalized cellulose filter paper for selective capture of diclofenac. Carbohydr Polym 220:43–52

    CAS  Google Scholar 

  • Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chemom 2017:3039817

    Google Scholar 

  • Badruddoza AZM, Bhattarai B, Suri RP (2017) Environmentally friendly β-cyclodextrin-ionic liquid polyurethane-modified magnetic sorbent for the removal of PFOA, PFOS, and Cr (VI) from water. ACS Sustain Chem Eng 5:9223–9232

    CAS  Google Scholar 

  • Baker M, Domanski A, Hollweg T, Murray J, Lane D, Skrabis K et al (2020) Restoration scaling approaches to addressing ecological injury: the habitat-based resource equivalency method. Environ Manag:1–17

  • Bakker ES, Van Donk E, Immers AK (2016) Lake restoration by in-lake iron addition: a synopsis of iron impact on aquatic organisms and shallow lake ecosystems. Aquat Ecol 50:121–135

    Google Scholar 

  • Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455

    CAS  Google Scholar 

  • Barbosa PFP, Cumba LR, Andrade RDA, do Carmo DR (2019) Chemical modifications of cyclodextrin and chitosan for biological and environmental applications: metals and organic pollutants adsorption and removal. J Polym Environ 27:1352–1366

    CAS  Google Scholar 

  • Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33:7475–7480

    CAS  Google Scholar 

  • Bender ML, Komiyama M (2012) Cyclodextrin chemistry (Vol. 6). Springer Science & Business Media

  • Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48:463–487

    CAS  Google Scholar 

  • Cai N, Larese-Casanova P (2014) Sorption of carbamazepine by commercial graphene oxides: a comparative study with granular activated carbon and multiwalled carbon nanotubes. J Colloid Interface Sci 426:152–161

    CAS  Google Scholar 

  • Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33:745–755

    CAS  Google Scholar 

  • Chen J, Pu Y, Wang C, Han J, Zhong Y, Liu K (2018) Synthesis of a novel nanosilica-supported poly β-cyclodextrin sorbent and its properties for the removal of dyes from aqueous solution. Colloid Surface A 538:808–817

    CAS  Google Scholar 

  • Chen B, Chen S, Zhao H, Liu Y, Long F, Pan X (2019a) A versatile β-cyclodextrin and polyethyleneimine bi-functionalized magnetic nanoadsorbent for simultaneous capture of methyl orange and Pb (II) from complex wastewater. Chemosphere 216:605–616

    CAS  Google Scholar 

  • Chen J, Liu M, Pu Y, Wang C, Han J, Jiang M, Liu K (2019b) The preparation of thin-walled multi-cavities β-cyclodextrin polymer and its static and dynamic properties for dyes removal. J Environ Manag 245:105–113

    CAS  Google Scholar 

  • Chen X, Chen M, Xu C, Yam KL (2019c) Critical review of controlled release packaging to improve food safety and quality. Crit Rev Food Sci 59:2386–2399

    Google Scholar 

  • Chen H, Zhou Y, Wang J, Lu J, Zhou Y (2020) Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2+. J Hazard Mater 389:121897

    CAS  Google Scholar 

  • Chiban M, Zerbet M, Carja G, Sinan F (2012) Application of low-cost adsorbents for arsenic removal: A review. J Environ Chem Ecotoxicol 4:91–102

    Google Scholar 

  • Choi Y, Sinha A, Im J, Jung H, Kim J (2019) Hierarchically porous composite scaffold composed of SBA-15 microrods and reduced graphene oxide functionalized with cyclodextrin for water purification. ACS Appl Mater Interfaces 11:15764–15772

    CAS  Google Scholar 

  • Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    CAS  Google Scholar 

  • Cox GS, Turro NJ, Yang NCC, Chen MJ (1984) Intramolecular exciplex emission from aqueous. beta.-cyclodextrin solutions. J Am Chem Soc 106:422–424

    CAS  Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    CAS  Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155

    CAS  Google Scholar 

  • Crini G, Morcellet M (2002) Synthesis and applications of adsorbents containing cyclodextrins. J Sep Sci 25:789–813

    CAS  Google Scholar 

  • Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N (2018) Cyclodextrins, from molecules to applications. Environ Chem Lett 16:1361–1375

    CAS  Google Scholar 

  • Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213

    CAS  Google Scholar 

  • Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3:1023–1035

    CAS  Google Scholar 

  • Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Google Scholar 

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229

    CAS  Google Scholar 

  • Devault DA, Lévi Y, Karolak S (2017) Applying sewage epidemiology approach to estimate illicit drug consumption in a tropical context: Bias related to sewage temperature and pH. Sci Total Environ 584:252–258

    Google Scholar 

  • Di S, Liu R, Tian Z, Cheng C, Chen L, Zhang W et al (2017) Assessment of tissue-specific accumulation, elimination and toxic effects of dichlorodiphenyltrichloroethanes (DDTs) in carp through aquatic food web. Sci Rep-UK 7:1–15

    CAS  Google Scholar 

  • Dolai J, Ali H, Jana NR (2020) Molecular imprinted poly-cyclodextrin for selective removal of dibutyl phthalate. ACS Appl Polym Mater 2:691–698

    CAS  Google Scholar 

  • Duan Z, Li Y, Zhang M, Bian H, Wang Y, Zhu L, Xia D (2020) Towards cleaner wastewater treatment for special removal of cationic organic dye pollutants: a case study on application of supramolecular inclusion technology with β-cyclodextrin derivatives. J Clean Prod 256:120308

    CAS  Google Scholar 

  • Elhafez SA, Hamad HA, Zaatout AA, Malash GF (2017) Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. Environ Sci Pollut R 24:1397–1415

    Google Scholar 

  • Euvrard É, Morin-Crini N, Druart C, Bugnet J, Martel B, Cosentino C et al (2016) Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters. Beilstein J Org Chem 12:1826–1838

    CAS  Google Scholar 

  • Fallah Z, Isfahani HN, Tajbakhsh M (2020) Removal of fluoride ion from aqueous solutions by titania-grafted β-cyclodextrin nanocomposite. Environ Sci Pollut R 27:3281–3294

    CAS  Google Scholar 

  • Fenyvesi E, Vikmon M, Szente L (2016) Cyclodextrins in food technology and human nutrition: benefits and limitations. Crit Rev Food Sci 56:1981–2004

    CAS  Google Scholar 

  • Fenyvesi É, Barkács K, Gruiz K, Varga E, Kenyeres I, Záray G, Szente L (2020) Removal of hazardous micropollutants from treated wastewater using cyclodextrin bead polymer-a pilot demonstration case. J Hazard Mater 383:121181

    CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    CAS  Google Scholar 

  • Fukuda S, Noda K, Oki T (2019) How global targets on drinking water were developed and achieved. Nat Sustain 2:429–434

    Google Scholar 

  • Gao F, Li J, Sun C, Zhang L, Jiang F, Cao W, Zheng L (2019) Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Mar Pollut Bull 144:61–67

    CAS  Google Scholar 

  • García-Zubiri ÍX, González-Gaitano G, Isasi JR (2007) Isosteric heats of sorption of 1-naphthol and phenol from aqueous solutions by β-cyclodextrin polymers. J Colloid Interface Sci 307:64–70

    Google Scholar 

  • Girek T, Kozlowski CA, Koziol JJ, Walkowiak W, Korus I (2005) Polymerisation of β-cyclodextrin with succinic anhydride. Synthesis, characterisation, and ion flotation of transition metals. Carbohydr Polym 59:211–215

    CAS  Google Scholar 

  • Gleick PH (1996) Basic water requirements for human activities: meeting basic needs. Water Int 21:83–92

    Google Scholar 

  • Hamann E, Stuyfzand PJ, Greskowiak J, Timmer H, Massmann G (2016) The fate of organic micropollutants during long-term/long-distance river bank filtration. Sci Total Environ 545:629–640

    Google Scholar 

  • He J, Li Y, Wang C, Zhang K, Lin D, Kong L, Liu J (2017) Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl Surf Sci 426:29–39

    CAS  Google Scholar 

  • Hemine K, Skwierawska A, Kernstein A, Kozłowska-Tylingo K (2020) Cyclodextrin polymers as efficient adsorbents for removing toxic non-biodegradable pimavanserin from pharmaceutical wastewaters. Chemosphere 250:126250

    CAS  Google Scholar 

  • Heredia A, Requena G, Sánchez FG (1985) An approach for the estimation of the polarity of the β-cyclodextrin internal cavity. J Chem Soc Chem Commun 24:1814–1815

    Google Scholar 

  • Herrera BA, Bruna TC, Sierpe RA, Lang EP, Urzúa M, Flores MI et al (2020) A surface functionalized with per-(6-amino-6-deoxy)-β-cyclodextrin for potential organic pollutant removal from water. Carbohydr Polym 233:115865

    CAS  Google Scholar 

  • Hou N, Wang R, Geng R, Wang F, Jiao T, Zhang L et al (2019) Facile preparation of self-assembled hydrogels constructed from poly-cyclodextrin and poly-adamantane as highly selective adsorbents for wastewater treatment. Soft Matter 15:6097–6106

    CAS  Google Scholar 

  • Hu X, Hu Y, Xu G, Li M, Zhu Y, Jiang L et al (2020a) Green synthesis of a magnetic β-cyclodextrin polymer for rapid removal of organic micro-pollutants and heavy metals from dyeing wastewater. Environ Res 180:108796

    CAS  Google Scholar 

  • Hu X, Xu G, Zhang H, Li M, Tu Y, Xie X et al (2020b) Multifunctional β-cyclodextrin polymer for simultaneous removal of natural organic matter and organic micropollutants and detrimental microorganisms from water. ACS Appl Mater Interfaces 12:12165–12175

    CAS  Google Scholar 

  • Huang W, Hu Y, Li Y, Zhou Y, Niu D, Lei Z, Zhang Z (2018) Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: the roles of cavity and surface functional groups. J Taiwan Inst Chem E 82:189–197

    CAS  Google Scholar 

  • Huang D, Wu J, Wang L, Liu X, Meng J, Tang X et al (2019) Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water. Chem Eng J 358:1399–1409

    CAS  Google Scholar 

  • Huang Q, Chai K, Zhou L, Ji H (2020) A phenyl-rich β-cyclodextrin porous crosslinked polymer for efficient removal of aromatic pollutants: insight into adsorption performance and mechanism. Chem Eng J 387:124020

    CAS  Google Scholar 

  • Jia S, Tang D, Peng J, Sun Z, Yang X (2019) β-Cyclodextrin modified electrospinning fibers with good regeneration for efficient temperature-enhanced adsorption of crystal violet. Carbohydr Polym 208:486–494

    CAS  Google Scholar 

  • Jiang L, Liu S, Liu Y, Zeng G, Guo Y, Yin Y et al (2017) Enhanced adsorption of hexavalent chromium by a biochar derived from ramie biomass (Boehmeria nivea (L.) Gaud.) modified with β-cyclodextrin/poly (L-glutamic acid). Environ Sci Pollut R 24:23528–23537

    CAS  Google Scholar 

  • Jiang HL, Lin JC, Hai W, Tan HW, Luo YW, Xie XL et al (2019) A novel crosslinked β-cyclodextrin-based polymer for removing methylene blue from water with high efficiency. Colloid Surface A 560:59–68

    CAS  Google Scholar 

  • Jiang HL, Xu MY, Xie ZW, Hai W, Xie XL, He FA (2020) Selective adsorption of anionic dyes from aqueous solution by a novel β-cyclodextrin-based polymer. J Mol Struct 1203:127373

    CAS  Google Scholar 

  • Junthip J (2019) Water-insoluble cyclodextrin polymer crosslinked with citric acid for paraquat removal from water. J Macromol Sci A 56:555–563

    CAS  Google Scholar 

  • Kamaraj R, Pandiarajan A, Jayakiruba S, Naushad M, Vasudevan S (2016) Kinetics, thermodynamics and isotherm modeling for removal of nitrate from liquids by facile one-pot electrosynthesized nano zinc hydroxide. J Mol Liq 215:204–211

    CAS  Google Scholar 

  • Kekes T, Tzia C (2020) Adsorption of indigo carmine on functional chitosan and β-cyclodextrin/chitosan beads: equilibrium, kinetics and mechanism studies. J Environ Manag 262:110372

    CAS  Google Scholar 

  • Kenway SJ, Lant PA, Priestley A, Daniels P (2011) The connection between water and energy in cities: a review. Water Sci Technol 63:1983–1990

    CAS  Google Scholar 

  • Kinniburgh DG (1986) General purpose adsorption isotherms. Environ Sci Technol 20:895–904

    CAS  Google Scholar 

  • Kobayashi Y, Nakamitsu Y, Zheng Y, Takashima Y, Yamaguchi H, Harada A (2019) Preparation of cyclodextrin-based porous polymeric membrane by bulk polymerization of ethyl acrylate in the presence of cyclodextrin. Polymer 177:208–213

    CAS  Google Scholar 

  • Kong L, Adidharma H (2019) A new adsorption model based on generalized van der Waals partition function for the description of all types of adsorption isotherms. Chem Eng J 375:122112

    CAS  Google Scholar 

  • Kong A, Ji Y, Ma H, Song Y, He B, Li J (2018) A novel route for the removal of Cu (II) and Ni (II) ions via homogeneous adsorption by chitosan solution. J Clean Prod 192:801–808

    CAS  Google Scholar 

  • Kramer FC, Shang R, Rietveld LC, Heijman SJG (2019) Influence of pH, multivalent counter ions, and membrane fouling on phosphate retention during ceramic nanofiltration. Sep Purif Technol 227:115675

    CAS  Google Scholar 

  • Kurniawan TA, Chan GY, Lo WH, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    CAS  Google Scholar 

  • Largitte L, Pasquier R (2016) New models for kinetics and equilibrium homogeneous adsorption. Chem Eng Res Des 112:289–297

    CAS  Google Scholar 

  • Larsen KL, Endo T, Ueda H, Zimmermann W (1998) Inclusion complex formation constants of α-, β-, γ-, δ-, ε-, ζ-, η-and θ-cyclodextrins determined with capillary zone electrophoresis. Carbohydr Res 309:153–159

    CAS  Google Scholar 

  • Lee S, Hur J (2016) Heterogeneous adsorption behavior of landfill leachate on granular activated carbon revealed by fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC). Chemosphere 149:41–48

    CAS  Google Scholar 

  • Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ (2000) Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33:4291–4294

    CAS  Google Scholar 

  • Li NN, Fane AG, Ho WW, Matsuura T (Eds.) (2011) Advanced membrane technology and applications. Wiley

  • Li X, Yang Y, Xu X, Xu C, Hong J (2016) Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China. J Clean Prod 112:1360–1367

    CAS  Google Scholar 

  • Li C, Klemes MJ, Dichtel WR, Helbling DE (2018a) Tetrafluoroterephthalonitrile-crosslinked β-cyclodextrin polymers for efficient extraction and recovery of organic micropollutants from water. J Chromatogr A 1541:52–56

    CAS  Google Scholar 

  • Li X, Zhou M, Jia J, Jia Q (2018b) A water-insoluble viologen-based β-cyclodextrin polymer for selective adsorption toward anionic dyes. React Funct Polym 126:20–26

    CAS  Google Scholar 

  • Li Y, Zhou Y, Zhou Y, Lei J, Pu S (2018c) Cyclodextrin modified filter paper for removal of cationic dyes/Cu ions from aqueous solutions. Water Sci Technol 78:2553–2563

    CAS  Google Scholar 

  • Li W, Liu H, Li L, Liu K, Liu J, Tang T, Jiang W (2019a) Green synthesis of citric acid-crosslinked β-cyclodextrin for highly efficient removal of uranium (VI) from aqueous solution. J Radioanal Nucl Ch 322:2033–2042

    CAS  Google Scholar 

  • Li X, Nie XJ, Zhu YN, Ye WC, Jiang YL, Su SL, Yan BT (2019b) Adsorption behaviour of Eriochrome Black T from water onto a cross-linked β-cyclodextrin polymer. Colloid Surface A 578:123582

    CAS  Google Scholar 

  • Liu G, Li L, Xu D, Huang X, Xu X, Zheng S et al (2017) Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr Polym 175:584–591

    CAS  Google Scholar 

  • Liu D, Huang Z, Li M, Sun P, Yu T, Zhou L (2019) Novel porous magnetic nanospheres functionalized by β-cyclodextrin polymer and its application in organic pollutants from aqueous solution. Environ Pollut 250:639–649

    CAS  Google Scholar 

  • Liu D, Huang Z, Li M, Li X, Sun P, Zhou L (2020a) Construction of magnetic bifunctional β-cyclodextrin nanocomposites for adsorption and degradation of persistent organic pollutants. Carbohydr Polym 230:115564

    CAS  Google Scholar 

  • Liu J, Wang S, Ding X, Fu J, Zhao J (2020b) Investigating the zinc ion adsorption capacity of a chitosan/β-cyclodextrin complex in wastewater. In E3S Web of Conferences (Vol. 143, p. 02006). EDP Sciences. https://doi.org/10.1051/e3sconf/202014302006

  • Liu J, Zhang C, Zhang S, Yu H, Xie W (2020c) A versatile β-cyclodextrin functionalized silver nanoparticle monolayer for capture of methyl orange from complex wastewater. Chin Chem Lett 31:539–542

    CAS  Google Scholar 

  • Liu Q, Zhou Y, Lu J, Zhou Y (2020d) Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review. Chemosphere 241:125043

    CAS  Google Scholar 

  • Liu JY, Zhang X, Tian B (2020e) Selective modifications at the different positions of cyclodextrins: a review of strategies. Turk J Chem 44:261–278

    CAS  Google Scholar 

  • Lou C, Tian X, Deng H, Wang Y, Jiang X (2020) Dialdehyde-β-cyclodextrin-crosslinked carboxymethyl chitosan hydrogel for drug release. Carbohydr Polym 231:115678

    CAS  Google Scholar 

  • Lu P, Cheng J, Li Y, Li L, Wang Q, He C (2019) Novel porous β-cyclodextrin/pillar[5]arene copolymer for rapid removal of organic pollutants from water. Carbohydr Polym 216:149–156

    CAS  Google Scholar 

  • Lu Q, Li N, Li J (2020) Supramolecular adsorption of cyclodextrin/polyvinyl alcohol film for purification of organic wastewater. J Polym Eng 40:158–172

    CAS  Google Scholar 

  • Ma J, He Y, Zeng G, Yang X, Chen X, Zhou L et al (2018) High-flux PVDF membrane incorporated with β-cyclodextrin modified halloysite nanotubes for dye rejection and Cu (II) removal from water. Polym Adv Technol 29:2704–2714

    CAS  Google Scholar 

  • Mizuno S, Asoh TA, Takashima Y, Harada A, Uyama H (2019) Cyclodextrin cross-linked polymer monolith for efficient removal of environmental pollutants by flow-through method. Polym Degrad Stab 160:136–141

    CAS  Google Scholar 

  • Mohammadi A, Veisi P (2018) High adsorption performance of β-cyclodextrin-functionalized multi-walled carbon nanotubes for the removal of organic dyes from water and industrial wastewater. J Environ Chem Eng 6:4634–4643

    CAS  Google Scholar 

  • Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin-epichlorohydrin polymers. Prog Polym Sci 38:344–368

    CAS  Google Scholar 

  • Morin-Crini N, Winterton P, Fourmentin S, Wilson LD, Fenyvesi E, Crini G (2018) Water-insoluble β-cyclodextrin-epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: a review of inclusion mechanisms. Prog Polym Sci 78:1–23

    CAS  Google Scholar 

  • Nafie G, Vitale G, Carbognani Ortega L, Nassar NN (2017) Nanopyroxene grafting with β-cyclodextrin monomer for wastewater applications. ACS Appl Mater Interfaces 9:42393–42407

    CAS  Google Scholar 

  • Neamţu M, Nădejde C, Hodoroabă VD, Schneider RJ, Ababei G, Panne U (2019) Photocatalysis of γ-cyclodextrin-functionalised Fe3O4 nanoparticles for degrading bisphenol A in polluted waters. Environ Chem 16:125–136

    Google Scholar 

  • Nguyen TD, Dang CH, Mai DT (2018) Biosynthesized AgNP capped on novel nanocomposite 2-hydroxypropyl-β-cyclodextrin/alginate as a catalyst for degradation of pollutants. Carbohydr Polym 197:29–37

    CAS  Google Scholar 

  • Nyairo WN, Eker YR, Kowenje C, Zor E, Bingol H, Tor A, Ongeri DM (2017) Efficient removal of lead (II) ions from aqueous solutions using methyl-β-cyclodextrin modified graphene oxide. Water Air Soil Pollut 228:406

    Google Scholar 

  • O’Connor D, Hou D, Ok YS, Song Y, Sarmah AK, Li X, Tack FM (2018) Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review. J Control Release 283:200–213

    Google Scholar 

  • Peng W, Li H, Liu Y, Song S (2017) A review on heavy metal ions adsorption from water by graphene oxide and its composites. J Mol Liq 230:496–504

    CAS  Google Scholar 

  • Preethi J, Farzana MH, Rathinam K, Vigneshwaran S, Karthikeyan P, Meenakshi S (2019) Enhanced photocatalytic response of ZnO embedded chitosan/β-cyclodextrin towards the detoxification of Cr (VI) under visible light. Int J Biol Macromol 147:867–876

    Google Scholar 

  • Priyadarshini E, Pradhan N (2017) Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sensor Actuat B-Chem 238:888–902

    CAS  Google Scholar 

  • Qadir M, Sharma BR, Bruggeman A, Choukr-Allah R, Karajeh F (2007) Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agr Water Manage 87:2–22

    Google Scholar 

  • Qin X, Bai L, Tan Y, Li L, Song F, Wang Y (2019) β-Cyclodextrin-crosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: fabrication, performance and mechanisms. Chem Eng J 372:1007–1018

    CAS  Google Scholar 

  • Qiu P, Wang S, Tian C, Lin Z (2019) Adsorption of low-concentration mercury in water by 3D cyclodextrin/graphene composites: synergistic effect and enhancement mechanism. Environ Pollut 252:1133–1141

    CAS  Google Scholar 

  • Rahman N, Nasir M (2020) Effective removal of acetaminophen from aqueous solution using Ca (II)-doped chitosan/β-cyclodextrin composite. J Mol Liq 301:112454

    CAS  Google Scholar 

  • Řezanka M (2019) Synthesis of substituted cyclodextrins. Environ Chem Lett 17:49–63

    Google Scholar 

  • Ribeiro ARL, Moreira NF, Puma GL, Silva AM (2019) Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem Eng J 363:155–173

    Google Scholar 

  • Romita R, Rizzi V, Semeraro P, Gubitosa J, Gabaldón JA, Gorbe MIF et al (2019) Operational parameters affecting the atrazine removal from water by using cyclodextrin based polymers as efficient adsorbents for cleaner technologies. Environ Technol Innov 16:100454

    Google Scholar 

  • Saenger W (1980) Cyclodextrin inclusion compounds in research and industry. Angew Chem Int Edit 19:344–362

    Google Scholar 

  • Samuel MS, Selvarajan E, Subramaniam K, Mathimani T, Seethappan S, Pugazhendhi A (2020) Synthesized β-cyclodextrin modified graphene oxide (β-CD-GO) composite for adsorption of cadmium and their toxicity profile in cervical cancer (HeLa) cell lines. Process Biochem 93:28–35

    CAS  Google Scholar 

  • Sawalha MF, Peralta-Videa JR, Romero-González J, Gardea-Torresdey JL (2006) Biosorption of Cd (II), Cr (III), and Cr (VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies. J Colloid Interface Sci 300:100–104

    CAS  Google Scholar 

  • Schweitzer L, Noblet J (2018) Water contamination and pollution. Green Chem. https://doi.org/10.1016/B978-0-12-809270-5.00011-X

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2010) Science and technology for water purification in the coming decades. Nanosci Technol:337–346

  • Sherje AP, Dravyakar BR, Kadam D, Jadhav M (2017) Cyclodextrin-based nanosponges: a critical review. Carbohydr Polym 173:37–49

    CAS  Google Scholar 

  • Shi Y, Zhang Y, Cui Y, Shi J, Meng X, Zhang J, He H (2019) Magnetite nanoparticles modified β-cyclodextrin PolymerCoupled with KMnO4 oxidation for adsorption and degradation of acetaminophen. Carbohydr Polym 222:114972

    CAS  Google Scholar 

  • Sikder MT, Rahman MM, Jakariya M, Hosokawa T, Kurasaki M, Saito T (2019) Remediation of water pollution with native cyclodextrins and modified cyclodextrins: a comparative overview and perspectives. Chem Eng J 355:920–941

    CAS  Google Scholar 

  • Singh NB, Nagpal G, Agrawal S (2018) Water purification by using adsorbents: a review. Environ Technol Innov 11:187–240

    Google Scholar 

  • Slack RJ, Gronow JR, Voulvoulis N (2005) Household hazardous waste in municipal landfills: contaminants in leachate. Sci Total Environ 337:119–137

    CAS  Google Scholar 

  • Surikumaran H, Mohamad S, Sarih NM (2016) Synthesis and evaluation of methacrylic acid functionalized β-cyclodextrin based molecular imprinted polymer for 2,4-dichlorophenol in water samples. Desalin Water Treat 57:254–267

    CAS  Google Scholar 

  • Szejtli J (2013) Cyclodextrin technology (Vol. 1). Springer Science & Business Media

  • Taka AL, Pillay K, Mbianda XY (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohydr Polym 159:94–107

    Google Scholar 

  • Tan KB, Vakili M, Horri BA, Poh PE, Abdullah AZ, Salamatinia B (2015) Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep Purif Technol 150:229–242

    CAS  Google Scholar 

  • Tang P, Sun Q, Suo Z, Zhao L, Yang H, Xiong X et al (2018) Rapid and efficient removal of estrogenic pollutants from water by using beta-and gamma-cyclodextrin polymers. Chem Eng J 344:514–523

    CAS  Google Scholar 

  • Tang P, Sun Q, Zhao L, Tang Y, Liu Y, Pu H et al (2019) A simple and green method to construct cyclodextrin polymer for the effective and simultaneous estrogen pollutant and metal removal. Chem Eng J 366:598–607

    CAS  Google Scholar 

  • Tesha JM, Dlamini DS, Qaseem S, Cui Z, Li J (2020) Tight ultrafiltration: layer deposition of trimesoyl chloride/β-cyclodextrin onto polysulfone/poly (styrene-co-maleic anhydride) membrane for water treatment. J Environ Chem Eng 8:103733

    CAS  Google Scholar 

  • Tian B, Hua S, Liu J (2020) Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: a review. Carbohydr Polym 232:115805

    CAS  Google Scholar 

  • Topuz F, Uyar T (2017) Poly-cyclodextrin cryogels with aligned porous structure for removal of polycyclic aromatic hydrocarbons (PAHs) from water. J Hazard Mater 335:108–116

    CAS  Google Scholar 

  • Tu Y, Xu G, Jiang L, Hu X, Xu J, Xie X, Li A (2020) Amphiphilic hyper-crosslinked porous cyclodextrin polymer with high specific surface area for rapid removal of organic micropollutants. Chem Eng J 382:123015

    CAS  Google Scholar 

  • Uekama K, Hirayama F, Irie T (1998) Cyclodextrin drug carrier systems. Chem Rev 98:2045–2076

    CAS  Google Scholar 

  • Vernouillet G, Eullaffroy P, Lajeunesse A, Blaise C, Gagné F, Juneau P (2010) Toxic effects and bioaccumulation of carbamazepine evaluated by biomarkers measured in organisms of different trophic levels. Chemosphere 80:1062–1068

    CAS  Google Scholar 

  • Vezzone M, Cesar R, de Souza Abessa DM, Serrano A, Lourenço R, Castilhos Z et al (2019) Metal pollution in surface sediments from Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil): toxic effects on marine organisms. Environ Pollut 252:270–280

    CAS  Google Scholar 

  • Wang Z, Zhang P, Hu F, Zhao Y, Zhu L (2017) A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water. Carbohydr Polym 177:224–231

    CAS  Google Scholar 

  • Wang G, Fan W, Li Q, Deng N (2019a) Enhanced photocatalytic new coccine degradation and Pb (II) reduction over graphene oxide-TiO2 composite in the presence of aspartic acid-β-cyclodextrin. Chemosphere 216:707–714

    CAS  Google Scholar 

  • Wang W, Gao H, Jin S, Li R, Na G (2019b) The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: a review. Ecotox Environ Safe 173:110–117

    CAS  Google Scholar 

  • Wang Z, Cui F, Pan Y, Hou L, Zhang B, Li Y, Zhu L (2019c) Hierarchically micro-mesoporous β-cyclodextrin polymers used for ultrafast removal of micropollutants from water. Carbohydr Polym 213:352–360

    CAS  Google Scholar 

  • Wang Z, Lin F, Huang L, Chang Z, Yang B, Liu S et al (2019d) Cyclodextrin functionalized 3D-graphene for the removal of Cr (VI) with the easy and rapid separation strategy. Environ Pollut 254:112854

    Google Scholar 

  • Wang J, Zhang W, Wei J (2019e) Fabrication of poly (β-cyclodextrin)-conjugated magnetic graphene oxide by surface-initiated RAFT polymerization for synergetic adsorption of heavy metal ions and organic pollutants. J Mater Chem A 7:2055–2065

    CAS  Google Scholar 

  • Wang Z, Guo S, Zhang B, Fang J, Zhu L (2020) Interfacially crosslinked β-cyclodextrin polymer composite porous membranes for fast removal of organic micropollutants from water by flow-through adsorption. J Hazard Mater 384:121187

    CAS  Google Scholar 

  • Wilson LD, Mohamed MH, Headley JV (2011) Surface area and pore structure properties of urethane-based copolymers containing β-cyclodextrin. J Colloid Interface Sci 357:215–222

    CAS  Google Scholar 

  • Wilson LD, Pratt DY, Kozinski JA (2013) Preparation and sorption studies of β-cyclodextrin-chitosan-glutaraldehyde terpolymers. J Colloid Interface Sci 393:271–277

    CAS  Google Scholar 

  • Wu D, Hu L, Wang Y, Wei Q, Yan L, Yan T et al (2018) EDTA modified β-cyclodextrin/chitosan for rapid removal of Pb (II) and acid red from aqueous solution. J Colloid Interface Sci 523:56–64

    CAS  Google Scholar 

  • Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D et al (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246:608–620

    CAS  Google Scholar 

  • Xiao L, Ling Y, Alsbaiee A, Li C, Helbling DE, Dichtel WR (2017) β-Cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations. J Am Chem Soc 139:7689–7692

    CAS  Google Scholar 

  • Xu G, Xie X, Qin L, Hu X, Zhang D, Xu J et al (2019) Simple synthesis of a swellable porous β-cyclodextrin-based polymer in the aqueous phase for the rapid removal of organic micro-pollutants from water. Green Chem 21:6062–6072

    CAS  Google Scholar 

  • Yamasaki H, Makihata Y, Fukunaga K (2008) Preparation of crosslinked β-cyclodextrin polymer beads and their application as a sorbent for removal of phenol from wastewater. J Chem Technol Biotechnol 83:991–997

    CAS  Google Scholar 

  • Yang L, Shahrivari Z, Liu PK, Sahimi M, Tsotsis TT (2005) Removal of trace levels of arsenic and selenium from aqueous solutions by calcined and uncalcined layered double hydroxides (LDH). Ind Eng Chem Res 44:6804–6815

    CAS  Google Scholar 

  • Yang S, Lin S, Fan J, Wang Y, Liu C, Yan X (2017) Rapid, complete removal of organic pollutants from water by a SnS2-modified porous β-cyclodextrin-containing polymer. ChemPlusChem 82:1218–1223

    CAS  Google Scholar 

  • Yang C, Huang H, Ji T, Zhang K, Yuan L, Zhou C et al (2019) A cost-effective crosslinked β-cyclodextrin polymer for the rapid and efficient removal of micropollutants from wastewater. Polym Int 68:805–811

    CAS  Google Scholar 

  • Yu T, Xue Z, Zhao X, Chen W, Mu T (2018) Green synthesis of porous β-cyclodextrin polymers for rapid and efficient removal of organic pollutants and heavy metal ions from water. New J Chem 42:16154–16161

    CAS  Google Scholar 

  • Yuan Z, Liu H, Wu H, Wang Y, Liu Q, Wang Y et al (2020) Cyclodextrin hydrogels: rapid removal of aromatic micropollutants and adsorption ,echanisms. J Chem Eng Data 65:678–689

    CAS  Google Scholar 

  • Zeng A, Zeng A (2017) Synthesis of a quaternized beta cyclodextrin-montmorillonite composite and its adsorption capacity for Cr (VI), methyl orange, and p-nitrophenol. Water Air Soil Pollut 228:1–17

    CAS  Google Scholar 

  • Zeng L, Chen Y, Zhang Q, Guo X, Peng Y, Xiao H et al (2015) Adsorption of Cd (II), Cu (II) and Ni (II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres. Carbohydr Polym 130:333–343

    CAS  Google Scholar 

  • Zhao G, Huang X, Tang Z, Huang Q, Niu F, Wang X (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem-UK 9:3562–3582

    CAS  Google Scholar 

  • Zhao HT, Ma S, Zheng SY, Han SW, Yao FX, Wang XZ et al (2019) β-Cyclodextrin functionalized biochars as novel sorbents for high-performance of Pb2+ removal. J Hazard Mater 362:206–213

    CAS  Google Scholar 

  • Zheng H, Gao Y, Zhu K, Wang Q, Wakeel M, Wahid A et al (2018) Investigation of the adsorption mechanisms of Pb (II) and 1-naphthol by β-cyclodextrin modified graphene oxide nanosheets from aqueous solution. J Colloid Interface Sci 530:154–162

    CAS  Google Scholar 

  • Zheng S, Xia S, Han S, Yao F, Zhao H, Huang M (2019) β-Cyclodextrin-loaded minerals as novel sorbents for enhanced adsorption of Cd2+ and Pb2+ from aqueous solutions. Sci Total Environ 693:133676

    CAS  Google Scholar 

  • Zhou Y, Cheng G, Chen K, Lu J, Lei J, Pu S (2019) Adsorptive removal of bisphenol A, chloroxylenol, and carbamazepine from water using a novel β-cyclodextrin polymer. Ecotox Environ Safe 170:278–285

    CAS  Google Scholar 

  • Zhu H, Chen D, Li N, Xu Q, Li H, He J, Lu J (2018) Cyclodextrin-functionalized Ag/AgCl foam with enhanced photocatalytic performance for water purification. J Colloid Interface Sci 531:11–17

    CAS  Google Scholar 

  • Zou Y, Wang X, Ai Y, Liu Y, Ji Y, Wang H et al (2016) β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. J Mater Chem A 4:14170–14179

    CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JL conceived the idea and coordinated the work. BT and SH drafted the manuscript. BT and YT performed the literature search and designed the tables and figures. JL revised the manuscript, critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bingren Tian or Jiayue Liu.

Ethics declarations

Ethical Approval

Not applicable.

Competing interest

The authors declare that they have no competing interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, B., Hua, S., Tian, Y. et al. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review. Environ Sci Pollut Res 28, 1317–1340 (2021). https://doi.org/10.1007/s11356-020-11168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11168-2

Keywords

Navigation