Skip to main content

Advertisement

Log in

The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal–organic frameworks to modify the morphology and performance of Pebax®1657-based gas separation membranes for CO2 capture applications

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A new type of honeycomb structured UiO-66 metal–organic frameworks (MOF) was synthesized and amino functionalized followed by employing them to prepare mixed matrix membranes (MMM). The influences of dimethylformamide (DMF) and H2O/ethanol (70/30 wt.%) blend were firstly investigated on morphology, structure, and CO2/CH4 separation efficiency of Pebax®1657 membranes. Based on the transmission electron microscopy (TEM) analysis, the synthesized MOF has 15 nm in diameter. DMF led to the formation of a more crystalline (based on X-ray diffraction (XRD) analysis) and more porous structure. Higher CO2 permeability and CO2/CH4 selectivity were observed as DMF was employed to fabricate neat membranes. Scanning electron microscopy (SEM) exhibited MOF agglomeration as the UiO-66 was used while the nanoparticle dispersion was enhanced when UiO-66-NH2 was exploited. Fourier transform infrared spectroscopy (FTIR) confirmed the successful MOF incorporation into the MMMs. Ultimately, the gas separation experiments showed that CO2 permeability was enhanced compared to the neat membrane by 44.7% and 49.4% as 10 wt.% UiO-66 and UiO-66-NH2 were used, respectively. Moreover, the Pebax®1657-UiO-66-NH2 MMMs exhibited 71.7% and 34.5% improvement in selectivity of CO2/N2 and CO2/CH4, respectively, owing to enhancing CO2–OH interactions while the CO2/O2 was declined by 8.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

L:

Membrane thickness

P2 :

Upstream feed gas pressure

Pg :

Pure gas permeability rate

S:

Membrane effective surface area

T:

Adjusted feed temperature

T :

Time

V:

Permeate side volume

Α :

Pair gas selectivity

References

  • Abedi S, Morsali A (2014) Ordered mesoporous metal–organic frameworks incorporated with amorphous TiO2 as photocatalyst for selective aerobic oxidation in sunlight irradiation. ACS Catal 4:1398–1403

    CAS  Google Scholar 

  • Adewole JK, Ahmad AL, Ismail S, Leo CP and Sultan AS (2015) Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4 separation, J Appl Polym Sci 132

  • Afshoun HR, Chenar MP, Ismail AF, Matsuura T (2017) Effect of support layer on gas permeation properties of composite polymeric membranes. Korean J Chem Eng 34:3178–3184

    CAS  Google Scholar 

  • Azizi N, Hojjati MR (2018) Using Pebax-1074/ZIF-7 mixed matrix membranes for separation of co2 from ch4. Pet Sci Technol 36:993–1000

    CAS  Google Scholar 

  • Azizi N, Zarei MM (2017) CO2/CH4 separation using prepared and characterized poly (ether-block-amide)/ZIF-8 mixed matrix membranes. Pet Sci Technol 35:869–874

    CAS  Google Scholar 

  • Azizi N, Arzani M, Mahdavi HR, Mohammadi T (2017a) Synthesis and characterization of poly (ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for co 2/ch 4 separation. Korean J Chem Eng 34:2459–2470

    CAS  Google Scholar 

  • Azizi N, Mohammadi T, Behbahani RM (2017b) Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/sio2 and PEBAX-1074/al2o3 nanocomposite membranes for CO2/CH4 separation. Chem Eng Res Des 117:177–189

    CAS  Google Scholar 

  • Azizi N, Mohammadi T, Behbahani RM (2017c) Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. J Nat Gas Sci Eng 37:39–51

    CAS  Google Scholar 

  • Bae S, Zaini N, Kamarudin KSN, Yoo KS, Kim J, Othman MR (2018) Rapid solvothermal synthesis of microporous UiO-66 particles for carbon dioxide capture. Korean J Chem Eng 35:764–769

    CAS  Google Scholar 

  • Biswas S, Van Der Voort P (2013) A general strategy for the synthesis of functionalised UiO-66 frameworks: characterisation, stability and CO2 adsorption properties. Eur J Inorg Chem 2013:2154–2160

    CAS  Google Scholar 

  • Car A, Stropnik C, Peinemann K-V (2006) Hybrid membrane materials with different metal-organic frameworks (mofs) for gas separation. Desalination (Amsterdam) 200:424–426

    CAS  Google Scholar 

  • Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Google Scholar 

  • Chun J, Kang S, Park N, Park EJ, Jin X, Kim K-D, Seo HO, Lee SM, Kim HJ, Kwon WH (2014) Metal–organic framework@ microporous organic network: hydrophobic adsorbents with a crystalline inner porosity. J Am Chem Soc 136:6786–6789

    CAS  Google Scholar 

  • Cmarik GE, Kim M, Cohen SM, Walton KS (2012) Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 28:15606–15613

    CAS  Google Scholar 

  • Dong L, Chen M, Li J, Shi D, Dong W, Li X, Bai Y (2016) Metal-organic framework-graphene oxide composites: a facile method to highly improve the co2 separation performance of mixed matrix membranes. J Membr Sci 520:801–811

    CAS  Google Scholar 

  • Ehsani A, Pakizeh M (2016) Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes. J Taiwan Inst Chem Eng 66:414–423

    CAS  Google Scholar 

  • Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Google Scholar 

  • Ghadimi A, Mohammadi T, Kasiri N (2014) A novel chemical surface modification for the fabrication of PEBA/SiO2 nanocomposite membranes to separate CO2 from syngas and natural gas streams. Ind Eng Chem Res 53:17476–17486

    CAS  Google Scholar 

  • Gin DL, Noble RD (2011) Designing the next generation of chemical separation membranes. Science 332:674–676

    CAS  Google Scholar 

  • Gouedard C, Picq D, Launay F, Carrette P-L (2012) Amine degradation in CO2 capture. I. A review. Int J Greenh Gas Con 10(244):244–270

    CAS  Google Scholar 

  • Heydari S, Pirouzfar V (2016) The influence of synthesis parameters on the gas selectivity and permeability of carbon membranes: empirical modeling and process optimization using surface methodology. RSC Adv 6(17):14149–14163

    CAS  Google Scholar 

  • Huang K, Dong Z, Li Q, Jin W (2013) Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors. Chem Commun 49:10326

    CAS  Google Scholar 

  • Isanejad M, Mohammadi T (2018) Effect of amine modification on morphology and performance of poly (ether-block-amide)/fumed silica nanocomposite membranes for co2/ch4 separation. Mater Chem Phys 205:303–314

    CAS  Google Scholar 

  • Isanejad M, Azizi N and Mohammadi T (2017) "Pebax membrane for co2/ch4 separation: effects of various solvents on morphology and performance", J Appl Polym Sci 134

  • Jamshidi M, Pirouzfar V, Abedini R, Pedram MZ (2017) The influence of nanoparticles on gas transport properties of mixed matrix membranes: an experimental investigation and modeling. Korean J Chem Eng 34:829–843

    CAS  Google Scholar 

  • Jeazet HB, Koschine T, Staudt C, Raetzke K, Janiak C (2013) Correlation of gas permeability in a metal-organic framework MIL-101 (Cr)–polysulfone mixed-matrix membrane with free volume measurements by positron annihilation lifetime spectroscopy (PALS). Membranes 3:331–353

    CAS  Google Scholar 

  • Jeong H-M, Roshan R, Babu R, Kim H-J, Park D-W (2018) Zirconium-based isoreticular metal-organic frameworks for CO2 fixation via cyclic carbonate synthesis. Korean J Chem Eng 35:438–444

    CAS  Google Scholar 

  • Jomekian A, Behbahani RM, Mohammadi T, Kargari A (2016) CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. J Nat Gas Sci Eng 31:562–574

    CAS  Google Scholar 

  • Jomekian A, Behbahani RM, Mohammadi T, Kargari A (2017) High speed spin coating in fabrication of Pebax 1657 based mixed matrix membrane filled with ultra-porous ZIF-8 particles for CO2/CH4 separation. Korean J Chem Eng 34:440–453

    CAS  Google Scholar 

  • Joshi R, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu H, Geim AK, Nair RR (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343:752

    CAS  Google Scholar 

  • Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater 22:6632–6640

    CAS  Google Scholar 

  • Khorramshokouh S, Pirouzfar V, Kazerouni Y, Fayyazbakhsh A, Abedini R (2016) Improving the properties and engine performance of diesel–methanol–nanoparticle blend fuels via optimization of the emissions and engine performance. Energy Fuel 30(10):8200–8208

    CAS  Google Scholar 

  • Kikhavani T, Ashrafizadeh S, Van der Bruggen B (2014) Nitrate selectivity and transport properties of a novel anion exchange membrane in electrodialysis. Electrochim Acta 144:341–351

    CAS  Google Scholar 

  • Koros WJ, Fleming G (1993) Membrane-based gas separation. J Membr Sci 83:1–80

    CAS  Google Scholar 

  • Lai LS, Yeong YF, Chew TL, Lau KK, Azmi MS (2016) CO2 and CH4 gas permeation study via zeolitic imidazolate framework (ZIF)-8 membrane. J Nat Gas Sci Eng 34:509–519

    CAS  Google Scholar 

  • Lee Y-R, Kim J, Ahn W-S (2013) Synthesis of metal-organic frameworks: a mini review. Korean J Chem Eng 30:1667–1680

    CAS  Google Scholar 

  • Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447

    CAS  Google Scholar 

  • Li Y, Xin Q, Wu H, Guo R, Tian Z, Liu Y, Wang S, He G, Pan F, Jiang Z (2014) Efficient CO2 capture by humidified polymer electrolyte membranes with tunable water state. Energy Environ Sci 7:1489

    CAS  Google Scholar 

  • Liu X, Demir NK, Wu Z, Li K (2015) Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J Am Chem Soc 137:6999–7002

    CAS  Google Scholar 

  • Luis P, Van Aubel D, Van der Bruggen B (2013) Technical viability and exergy analysis of membrane crystallization: closing the loop of CO2 sequestration. Int J Greenh Gas Con 12:450–459

    CAS  Google Scholar 

  • MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) An overview of CO2 capture technologies. Energy Environ Sci 3:1645

    CAS  Google Scholar 

  • Mahdavi HR, Azizi N, Arzani M, Mohammadi T (2017) Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane. J Nat Gas Sci Eng 46:275–288

    CAS  Google Scholar 

  • Mahpoz N Ma, Abdullah N, Pauzi MZM, Rahman MA, Abas KH, Aziz AA, Othman MHD, Jaafar J, Ismail AF (2019) Synthesis and performance evaluation of zeolitic imidazolate framework-8 membranes deposited onto alumina hollow fiber for desalination. Korean J Chem Eng 36:439

    CAS  Google Scholar 

  • Meshkat S, Kaliaguine S, Rodrigue D (2018) Mixed matrix membranes based on amine and non-amine mil-53 (al) in Pebax® MH-1657 for CO2 separation. Sep Purif Technol 200:177–190

    CAS  Google Scholar 

  • Moghadam F, Omidkhah M, Vasheghani-Farahani E, Pedram M, Dorosti F (2011) The effect of TiO2 nanoparticles on gas transport properties of matrimid5218-based mixed matrix membranes. Sep Purif Technol 77:128–136

    CAS  Google Scholar 

  • Mondal MK, Balsora HK, Varshney P (2012) Progress and trends in CO2 capture/separation technologies: a review. Energy 46:431–441

    CAS  Google Scholar 

  • Murali RS, Sridhar S, Sankarshana T, Ravikumar Y (2010) Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind Eng Chem Res 49:6530–6538

    CAS  Google Scholar 

  • Nagar H, Vadthya P, Prasad NS, Sridhar S (2015) Air separation by facilitated transport of oxygen through a Pebax membrane incorporated with a cobalt complex. RSC Adv 5:76190–76201

    CAS  Google Scholar 

  • Nenoff TM (2015) Hydrogen purification: MOF membranes put to the test. Nat Chem 7:377–378

    CAS  Google Scholar 

  • Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications–a review. Energy 35:2610–2628

    CAS  Google Scholar 

  • Pirouzfar V, Omidkhah MR (2016) Mathematical modeling and optimization of gas transport through carbon molecular sieve membrane and determining the model parameters using genetic algorithm. Iran Polym J 25(3):203–212

    CAS  Google Scholar 

  • Pirouzfar V, Zarringhalam Moghaddam A, Mirza B (2012) Physicochemical properties and combustion performance of gas oil–fuel additives. ASME J Energ Resour Technol 134(4):041101

    Google Scholar 

  • Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    CAS  Google Scholar 

  • Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    CAS  Google Scholar 

  • Rodrigues MA, de Souza Ribeiro J, de Souza Costa E, de Miranda JL, Ferraz HC (2018) Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Sep Purif Technol 192:491–500

    CAS  Google Scholar 

  • Sahebia S, Sheikhic M, Ramavandid B (2019) A new biomimetic aquaporin thin film composite membrane for forward osmosis: characterization and performance assessment. Desalin Water Treat 148:42–50

    Google Scholar 

  • Salimi M, Pirouzfar V, Kianfar E (2017a) Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid Polym Sci 295(1):215–226

    CAS  Google Scholar 

  • Salimi M, Pirouzfar V, Kianfar E (2017b) Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C 2 H 6/CH 4 separation. Polymer Science, Series A 59(4):566–574

    CAS  Google Scholar 

  • Sanaeepur H, Mashhadikhan S, Mardassi G, Amooghin AE, Van der Bruggen B, Moghadassi A (2019) Aminosilane cross-linked poly ether-block-amide Pebax 2533: characterization and CO2 separation properties. Korean J Chem Eng 36:1339–1349

    CAS  Google Scholar 

  • Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54:4729–4761

    CAS  Google Scholar 

  • Shao L, Chung T-S, Wensley G, Goh SH, Pramoda KP (2004) Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA–TMMDA copolyimide membrane and its derived carbon membranes. J Membr Sci 244:77–87

    CAS  Google Scholar 

  • Sharma P, Kim YJ, Kim M-Z, Alam SF, Cho C-H (2019) Stable polymeric chain configuration producing high performance Pebax-1657 membrane for CO2 separation. Nanoscale Advances 1:2633–2644

    CAS  Google Scholar 

  • Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W (2016) UiO-66-polyether block amide mixed matrix membranes for CO2 separation. J Membr Sci 513:155–165

    CAS  Google Scholar 

  • Soleymanipour SF, Dehaghani AHS, Pirouzfar V, Alihosseini A (2016) The morphology and gas-separation performance of membranes comprising multiwalled carbon nanotubes/polysulfone–Kapton. J Appl Polym Sci 133(34)

  • Stavitski E, Pidko EA, Couck S, Remy T, Hensen EJ, Weckhuysen BM, Denayer J, Gascon J, Kapteijn F (2011) Complexity behind CO2 capture on NH2-MIL-53 (Al). Langmuir 27:3970–3976

    CAS  Google Scholar 

  • Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2011) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112:724

    Google Scholar 

  • Swain SS, Unnikrishnan L, Mohanty S, Nayak SK (2017) Effect of nanofillers on selectivity of high performance mixed matrix membranes for separating gas mixtures. Korean J Chem Eng 34:2119–2134

    CAS  Google Scholar 

  • Vermoortele F, Bueken B, Le Bars GL, Van de Voorde B, Vandichel M, Houthoofd K, Vimont A, Daturi M, Waroquier M, Van Speybroeck V (2013) Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66 (Zr). J Am Chem Soc 135:11465–11468

    CAS  Google Scholar 

  • Vimont A, Travert A, Bazin P, Lavalley J-C, Daturi M, Serre C, Férey G, Bourrelly S, Llewellyn PL (2007) Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal–organic-framework MIL-53 or Cr 3+(OH)(O 2 C–C 6 H 4–CO 2). Chem Commun 3291

  • Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W (2013) Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532

    CAS  Google Scholar 

  • Xu L, Xiang L, Wang C, Yu J, Zhang L, Pan Y (2017) Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals. Chin J Chem Eng 25:882–891

    CAS  Google Scholar 

  • Zornoza B, Seoane B, Zamaro JM, Téllez C, Coronas J (2011) Combination of mofs and zeolites for mixed-matrix membranes. ChemPhysChem 12:2781–2785

    CAS  Google Scholar 

  • Zyaie J, Sheikhi M, Baniasadi J, Sahebi S, Mohammadi T (2018) Assessment of a thermally modified cellulose acetate forward-osmosis membrane using response surface methodology. Chem Eng Technol 41:1706–1715

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Salimi.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmadi, R., Salimi, M. & Pirouzfar, V. The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal–organic frameworks to modify the morphology and performance of Pebax®1657-based gas separation membranes for CO2 capture applications. Environ Sci Pollut Res 27, 40618–40632 (2020). https://doi.org/10.1007/s11356-020-09927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09927-2

Keywords

Navigation