Skip to main content
Log in

Cadmium tolerance and detoxification in Myriophyllum aquaticum: physiological responses, chemical forms, and subcellular distribution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Submerged macrophytes have been found to be promising in removing cadmium (Cd) from aquatic ecosystems; however, the mechanism of Cd detoxification in these plants is still poorly understood. In the present study, Cd chemical forms and subcellular distributing behaviors in Myriophyllum aquaticum and the physiological mechanism underlying M. aquaticum in response to Cd stress were explored. During the study, M. aquaticum was grown in a hydroponic system and was treated under different concentrations of Cd (0, 0.01, 0.05, 0.25, and 1.25 mg/L) for 14 days. The differential centrifugation suggested that most Cd was split in the soluble fraction (57.40–66.25%) and bound to the cell wall (24.92–38.57%). Furthermore, Cd in M. aquaticum was primarily present in NaCl-extractable Cd (51.76–91.15% in leaves and 58.71–84.76% in stems), followed by acetic acid–extractable Cd (5.17–22.42% in leaves and 9.54–16.56% in stems) and HCl-extractable Cd (0.80–12.23% in leaves and 3.56–18.87% in stems). The malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations in M. aquaticum were noticeably increased under each Cd concentration. The activities of catalase (CAT), guaiacol peroxidase (POD), and superoxide dismutase (SOD) in leaves were initially increased under relatively low concentrations of Cd but were decreased further with the increasing concentrations of Cd. The ascorbate (AsA), glutathione (GSH), and nitric oxide (NO) concentrations in stems increased with increasing Cd concentrations. Taken together, our results indicate that M. aquaticum can be used successfully for phytoremediation of Cd-contaminated water, and the detoxification mechanisms in M. aquaticum include enzymatic and non-enzymatic antioxidants, subcellular partitioning, and the formation of different chemical forms of Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P (2018) Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255:79–93

    CAS  Google Scholar 

  • Akram NA, Iqbal M, Muhammad A, Ashraf M, Al-Qurainy F, Shafiq S (2018) Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma 255:163–174

    CAS  Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Method Enzymol 113:548–555

    CAS  Google Scholar 

  • Bari MA, Akther MS, Abu Reza M, Kabir AH (2019) Cadmium tolerance is associated with the root-driven coordination of cadmium sequestration, iron regulation, and ROS scavenging in rice. Plant Physiol Biochem 136:22–33

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutasee: improved assays and an assay applied to acrylamide gels. Anal Biochem 44:276–287

    CAS  Google Scholar 

  • Beauvais-Fluck R, Slaveykova VI, Cosio C (2019) Comparative study of Cu uptake and early transcriptome responses in the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii. Environ Pollut 250:331–337

    CAS  Google Scholar 

  • Bello AO, Tawabini BS, Khalil AB, Boland CR, Saleh TA (2018) Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol Eng 120:126–133

    Google Scholar 

  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman JF, Lutts S, Cai G, Guerriero G (2019) Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106

    CAS  Google Scholar 

  • Bhatia NP, Walsh KB, Baker AJ (2005) Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot 56:1343–1349

    CAS  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    CAS  Google Scholar 

  • Caillat A, Ciffroy P, Grote M, Rigaud S, Garnier JM (2014) Bioavailability of copper in contaminated sediments assessed by a dgt approach and the uptake of copper by the aquatic plant Myriophyllum aquaticum. Environ Toxicol Chem 33:278–285

    CAS  Google Scholar 

  • Chen M, Ding S, Gao S, Fu Z, Tang W, Wu Y, Gong M, Wang D, Wang Y (2019) Efficacy of dredging engineering as a means to remove heavy metals from lake sediments. Sci Total Environ 665:181–190

    CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    CAS  Google Scholar 

  • Dogan M, Saygideger SD, Colak U (2009) Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull Environ Contam Toxicol 83:249–254

    CAS  Google Scholar 

  • Dominguez DM, Garcia FC, Raya AC, Santiago RT (2010) Cadmium-induced oxidative stress and the response of the antioxidative defense system in Spartina densiflora. Physiol Plantarum 139:289–302

    Google Scholar 

  • Đukić-Ćosić D, Baralić K, Javorac D, Đorđević AB, Bulat Z (2020) An overview of molecular mechanisms in cadmium toxicity. Curr Opin Toxicol 19:56–62

    Google Scholar 

  • Farooq MA, Ali S, Hameed A, Bharwana SA, Rizwan M, Ishaque W, Farid M, Mahmood K, Iqbal Z (2016) Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. S Afr J Bot 104:61–68

    CAS  Google Scholar 

  • Fu X, Dou C, Chen Y, Chen X, Shi J, Yu M, Xu J (2011) Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater 186:103–107

    CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    CAS  Google Scholar 

  • Harguinteguy CA, Pignata ML, Fernandez-Cirelli A (2015) Nickel, lead and zinc accumulation and performance in relation to their use in phytoremediation of macrophytes Myriophyllum aquaticum and Egeria densa. Ecol Eng 82:512–516

    Google Scholar 

  • Hediji H, Djebali W, Belkadhi A, Cabasson C, Moing A, Rolin D, Brouquisse R, Gallusci P, Chaibi W (2015) Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: consequences on fruit production. S Afr J Bot 97:176–181

    CAS  Google Scholar 

  • Hu Y, Lu L, Tian S, Li S, Liu X, Gao X, Zhou W, Lin X (2019) Cadmium-induced nitric oxide burst enhances Cd tolerance at early stage in roots of a hyperaccumulator Sedum alfredii partially by altering glutathione metabolism. Sci Total Environ 650:2761–2770

    CAS  Google Scholar 

  • Imran QM, Falak N, Hussain A, Mun BG, Sharma A, Lee SU, Kim KM, Yun BW (2016) Nitric oxide responsive heavy metal-associated gene AtHMAD1 contributes to development and disease resistance in Arabidopsis thaliana. Front Plant Sci 7:1–16

    Google Scholar 

  • Irfan M, Ahmad A, Hayat S (2014) Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci 21:125–131

    CAS  Google Scholar 

  • Jana S, Choudhuri MA (1981) Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. Aquat Bot 11:67–77

    CAS  Google Scholar 

  • Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P (2019) Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 225:627–638

    CAS  Google Scholar 

  • Kováčik J, Babula P, Hedbavny J (2017) Comparison of vascular and non-vascular aquatic plant as indicators of cadmium toxicity. Chemosphere 180:86–92

    Google Scholar 

  • Lai HY (2015) Subcellular distribution and chemical forms of cadmium in Impatiens walleriana in relation to its phytoextraction potential. Chemosphere 138:370–376

    CAS  Google Scholar 

  • Lan X, Yan Y, Yang B, Li X, Xu F (2019) Subcellular distribution of cadmium in a novel potential aquatic hyperaccumulator - Microsorum pteropus. Environ Pollut 248:1020–1027

    CAS  Google Scholar 

  • Li Y, Zhang S, Jiang W, Liu D (2013) Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ Sci Pollut Res 20:1117–1123

    CAS  Google Scholar 

  • Li H, Luo N, Zhang L, Zhao H, Li Y, Cai Q, Wong M, Mo C (2016) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190

    CAS  Google Scholar 

  • Li B, Gu B, Yang Z, Zhang T (2018) The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: a case study on Vallisneria natans (Lour.) Hara. Ecotox Environ Safe 165:224–231

    CAS  Google Scholar 

  • Li X, Ma H, Li L, Gao Y, Li Y, Xu H (2019) Subcellular distribution, chemical forms and physiological responses involved in cadmium tolerance and detoxification in Agrocybe aegerita. Ecotox Environ Safe 171:66–74

    CAS  Google Scholar 

  • Lu H, Li Z, Wu J, Shen Y, Li Y, Zou B, Tang Y, Zhuang P (2017) Influences of calcium silicate on chemical forms and subcellular distribution of cadmium in Amaranthus hypochondriacus L. Sci Rep 7:1–9

    Google Scholar 

  • Meng Q, Zou J, Zou J, Jiang W, Liu D (2007) Effect of Cu2+ concentration on growth, antioxidant enzyme activity and malondialdehyde content in garlic (Allium sativum L.). Acta Biol Cracov Ser Bot 49:95–101

    Google Scholar 

  • Murtaza B, Naeem F, Shahid M, Abbas G, Shah NS, Amjad M, Bakhat HF, Imran M, Niazi NK, Murtaza G (2019) A multivariate analysis of physiological and antioxidant responses and health hazards of wheat under cadmium and lead stress. Environ Sci Pollut Res 26:362–370

    CAS  Google Scholar 

  • Mwamba TM, Li L, Gill RA, IsIam F, Nawaz A, Ali B, Farooq MA, Lwalaba JL, Zhou W (2016) Differential subcellular distribution and chemical forms of cadmium and copper in Brassica napus. Ecotox Environ Safe 134:239–249

    CAS  Google Scholar 

  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun BG, Yun BW (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133

    CAS  Google Scholar 

  • Naderi S, Gholami M, Baninasab B, Afyuni M (2018) Physiological responses to cadmium stress in strawberry treated with pomegranate peel-activated carbon. Int J Phytoremediat 20:599–607

    CAS  Google Scholar 

  • Ngayila N, Basly JP, Lejeune AH, Botineau M, Baudu M (2007) Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure. Sci Total Environ 373:564–571

    CAS  Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Zylkiewicz B, Zambrzycka E (2010) Changes in growth, biochemical components, and antioxidant activity in aquatic plant Wolffia arrhiza (Lemnaceae) exposed to cadmium and lead. Arch Environ Contam Toxicol 58:594–604

    CAS  Google Scholar 

  • Pittman JK (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol 167:733–742

    CAS  Google Scholar 

  • Qu R, Wang X, Wang Z, Wei Z, Wang L (2014) Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. J Hazard Mater 275:89–98

    CAS  Google Scholar 

  • Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    CAS  Google Scholar 

  • Semida WM, Hemida KA, Rady MM (2018) Sequenced ascorbate-proline-glutathione seed treatment elevates cadmium tolerance in cucumber transplants. Ecotox Environ Safe 154:171–179

    CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    CAS  Google Scholar 

  • Shi G, Xia S, Liu C, Zhang Z (2016) Cadmium accumulation and growth response to cadmium stress of eighteen plant species. Environ Sci Pollut Res 23:23071–23080

    CAS  Google Scholar 

  • Shi G, Zhang Z, Liu C (2017) Silicon influences cadmium translocation by altering subcellular distribution and chemical forms of cadmium in peanut roots. Arch Agron Soil Sci 63:117–123

    CAS  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    CAS  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V, Dhankher OP, Tripathi RD (2016) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1–14

    Google Scholar 

  • Singh S, Singh A, Srivastava PK, Prasad SM (2018) Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-a-vis ascorbate-glutathione cycle. J Photoch Photobio B 178:76–84

    CAS  Google Scholar 

  • Sivaci ER, Sivaci A, Mu S (2004) Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere 56:1043–1048

    Google Scholar 

  • Sivaci A, Elmas E, Gumus F, Sivaci ER (2008) Removal of cadmium by Myriophyllum heterophyllum Michx. and Potamogeton crispus L. and its effect on pigments and total phenolic compounds. Arch Environ Contam Toxicol 54:612–618

    CAS  Google Scholar 

  • Spengler A, Wanninger L, Pflugmacher S (2017) Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata. Aquat Toxicol 190:32–39

    CAS  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415

    CAS  Google Scholar 

  • Su C, Jiang Y, Li F, Yang Y, Lu Q, Zhang T, Hu D, Xu Q (2017) Investigation of subcellular distribution, physiological, and biochemical changes in Spirodela polyrhiza as a function of cadmium exposure. Environ Exp Bot 142:24–33

    CAS  Google Scholar 

  • Sun R, Zhou Q, Sun F, Jin C (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot 60:468–476

    CAS  Google Scholar 

  • Takahama U, Oniki T (1997) A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol Plantarum 101:845–852

    CAS  Google Scholar 

  • Tanaka K, Suda Y, Kondo N, Sugahara K (1985) O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol 26:1425–1431

    CAS  Google Scholar 

  • Varga M, Horvatic J, Celic A (2013) Short term exposure of Lemna minor and Lemna gibba to mercury, cadmium and chromium. Cent Eur J Biol 8:1083–1093

    CAS  Google Scholar 

  • Wang C, Sun Q, Wang L (2009) Cadmium toxicity and phytochelatin production in a rooted-submerged macrophyte Vallisneria spiralis exposed to low concentrations of cadmium. Environ Toxicol 24:271–278

    CAS  Google Scholar 

  • Wei S, Zeng X, Wang S, Zhu J, Ji D, Li Y, Jiao H (2014) Hyperaccumulative property of Solanum nigrum L. to Cd explored from cell membrane permeability, subcellular distribution, and chemical form. J Soils Sediments 14:558–566

    CAS  Google Scholar 

  • Weigel HJ, Jäger HJ (1980) Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol 65:480–482

    CAS  Google Scholar 

  • Wu F, Dong J, Qian Q, Zhang G (2005) Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere 60:1437–1446

    CAS  Google Scholar 

  • Xin J, Huang B (2014) Subcellular distribution and chemical forms of cadmium in two hot pepper cultivars differing in cadmium accumulation. J Agr Food Chem 62:508–515

    CAS  Google Scholar 

  • Xin J, Zhang Y, Tian R (2018) Tolerance mechanism of Triarrhena sacchariflora (Maxim.) Nakai. seedlings to lead and cadmium: translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure. Ecotoxicol Environ Saf 165:611–621

    CAS  Google Scholar 

  • Xing W, Wu H, Hao B, Huang W, Liu G (2013) Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environ Sci Technol 47:4695–4703

    CAS  Google Scholar 

  • Xu Q, Min H, Cai S, Fu Y, Sha S, Xie K, Du K (2012) Subcellular distribution and toxicity of cadmium in Potamogeton crispus L. Chemosphere 89:114–120

    CAS  Google Scholar 

  • Xu P, Zeng G, Huang D, Liu L, Zhao M, Lai C, Li N, Wei Z, Huang C, Zhang C (2016) Metal bioaccumulation, oxidative stress and antioxidant defenses in Phanerochaete chrysosporium response to Cd exposure. Ecol Eng 87:150–156

    Google Scholar 

  • Xu X, Zhang S, Xian J, Yang Z, Cheng Z, Li T, Jia Y, Pu Y, Li Y (2018) Subcellular distribution, chemical forms and thiol synthesis involved in cadmium tolerance and detoxification in Siegesbeckia orientalis L. Int J Phytoremediat 20:973–980

    CAS  Google Scholar 

  • Yang L, Zeng J, Wang P, Zhu J (2018a) Sodium hydrosulfide alleviates cadmium toxicity by changing cadmium chemical forms and increasing the activities of antioxidant enzymes in salix. Environ Exp Bot 156:161–169

    CAS  Google Scholar 

  • Yang L, Zhu J, Wang P, Zeng J, Tan R, Yang Y, Liu Z (2018b) Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicol Environ Saf 160:10–18

    CAS  Google Scholar 

  • Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B (2013) Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.). Int J Phytoremediat 15:513–521

    CAS  Google Scholar 

  • Zhao Y, Wu J, Shang D, Ning J, Zhai Y, Sheng X, Ding H (2015) Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis. Food Chem 168:48–54

    CAS  Google Scholar 

  • Zhao H, Jin Q, Wang Y, Chu L, Li X, Xu Y (2016) Effects of nitric oxide on alleviating cadmium stress in Typha angustifolia. Plant Growth Regul 78:243–251

    CAS  Google Scholar 

  • Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56:3223–3228

    CAS  Google Scholar 

  • Zhou Q, Guo J, He C, Shen C, Huang Y, Chen J, Guo J, Yuan J, Yang Z (2016) Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of pakchoi (Brassica chinensis L.) in response to cadmium stress. Environ Sci Technol 50:6485–6494

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Fujian Province of China (Grant Nos. 2016J01695 and 2019H0036), the National Natural Science Funds of China (Grant No. 51878582), and the Natural Science Funds of Xiamen University of Technology (Grant No. XPDKT19029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxin Li.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Li, Q., Wang, L. et al. Cadmium tolerance and detoxification in Myriophyllum aquaticum: physiological responses, chemical forms, and subcellular distribution. Environ Sci Pollut Res 27, 37733–37744 (2020). https://doi.org/10.1007/s11356-020-09872-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09872-0

Keywords

Navigation