Skip to main content

Advertisement

Log in

GSTs polymorphisms are associated with epigenetic silencing of CDKN2A gene in esophageal squamous cell carcinoma

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Esophageal cancer is the eighth most common cancer and the sixth most frequent cause of cancer mortality worldwide. Exposure to polycyclic aromatic hydrocarbons formed by incomplete combustion of organic matter is an important risk factor. Genetic polymorphisms in genes encoding PAH-metabolizing enzymes like glutathione S-transferases (GSTM1, GSTP1, GSTT1) which conjugate glutathione to PAHs for reduction of oxidative stress may affect an individual’s response to PAH exposure. Genomic DNA from 50 esophageal squamous cell carcinoma patients extracted from peripheral blood. PCR-RFLP technique was employed to determine GSTM1, GSTT1, and GSTP1 polymorphisms. Aberrant promoter methylation of CDKN2A was applied by methylation-specific PCR technique. Concentration of urinary 1-hydroxypyrene was determined using a HPLC system. About 38.7% showed the null GSTM1 genotype (54% cases and 13% controls), 23.7% showed GSTT1 null genotype (30% cases and 13% controls), and 62.5% were GSTP1 A/A genotype (66% cases and 56% controls). Polymorphic variants of GSTM1 and GSTT1 were significantly associated with aberrant methylation of CDKN2A gene. The null state of GSTT1 was significantly associated with high concentrations of 1-OHP in urea (p < 0.01). There was significant association between methylated states of CDKN2A and high concentrations of 1-OHP in urine (p < 0.01). We identified significant association between polymorphism of GSTs genes and epigenetic silencing of tumor suppressor gene CDKN2A in esophageal squamous cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas A, Delvinquiere K, Lechevrel M, Lebailly P, Gauduchon P, Launoy G, Sichel F (2004) GSTM1, GSTT1, GSTP1 and CYP1A1 genetic polymorphisms and susceptibility to esophageal cancer in a French population: different pattern of squamous cell carcinoma and adenocarcinoma. World J Gastroenterol 10:3389–3393

    Article  CAS  Google Scholar 

  • Abbaszadegan MR, Raziee HR, Ghafarzadegan K, Shakeri MT, Afsharnezhad S, Ghavamnasiry MR (2005) Aberrant p16 methylation, a possible epigenetic risk factor in familial esophageal squamous cell carcinoma. Int J Gastrointest Cancer 36:47–54. https://doi.org/10.1385/IJGC:36:1:047

    Article  CAS  Google Scholar 

  • Abbaszadegan MR, Moaven O, Sima HR, Ghafarzadegan K, A'rabi A, Forghani MN, Raziee HR, Mashhadinejad A, Jafarzadeh M, Esmaili-Shandiz E, Dadkhah E (2008) p16 promoter hypermethylation: a useful serum marker for early detection of gastric cancer. World J Gastroenterol 14:2055–2060

    Article  CAS  Google Scholar 

  • Buckley TJ, Lioy PJ (1992) An examination of the time course from human dietary exposure to polycyclic aromatic hydrocarbons to urinary elimination of 1-hydroxypyrene. Br J Ind Med 49:113–124

    CAS  Google Scholar 

  • Casson AG, Zheng Z, Porter GA, Guernsey DL (2006) Genetic polymorphisms of microsomal epoxide hydroxylase and glutathione S-transferases M1, T1 and P1, interactions with smoking, and risk for esophageal (Barrett) adenocarcinoma. Cancer Detect Prev 30:423–431. https://doi.org/10.1016/j.cdp.2006.09.005

    Article  CAS  Google Scholar 

  • Garte S et al (2007) Effects of metabolic genotypes on intermediary biomarkers in subjects exposed to PAHS: results from the EXPAH study. Mutat Res 620:7–15. https://doi.org/10.1016/j.mrfmmm.2007.02.017

    Article  CAS  Google Scholar 

  • Gholipour M et al (2016) Esophageal Cancer in Golestan Province, Iran: a review of genetic susceptibility and environmental risk factors. Middle East J Dig Dis 8(4):249–266. https://doi.org/10.15171/mejdd.2016.34

    Article  Google Scholar 

  • Gignoux M, Launoy G (1999) Recent epidemiologic trends in cancer of the esophagus. Rev Prat 49:1154–1158

    CAS  Google Scholar 

  • Hansen AM, Wallin H, Binderup ML, Dybdahl M, Autrup H, Loft S, Knudsen LE (2004) Urinary 1-hydroxypyrene and mutagenicity in bus drivers and mail carriers exposed to urban air pollution in Denmark. Mutat Res 557:7–17

    Article  CAS  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857

    Article  CAS  Google Scholar 

  • Hecht SS (2002) Human urinary carcinogen metabolites: biomarkers for investigating tobacco and cancer. Carcinogenesis 23:907–922

    Article  CAS  Google Scholar 

  • Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3:733–744. https://doi.org/10.1038/nrc1190

    Article  CAS  Google Scholar 

  • Huang Y et al (2011) Cigarette smoke induces promoter methylation of single-stranded DNA-binding protein 2 in human esophageal squamous cell carcinoma. Int J Cancer 128:2261–2273. https://doi.org/10.1002/ijc.25569

    Article  CAS  Google Scholar 

  • Jacob J, Seidel A (2002) Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 778:31–47

    Article  CAS  Google Scholar 

  • Jain M, Kumar S, Lal P, Tiwari A, Ghoshal UC, Mittal B (2007) Role of GSTM3 polymorphism in the risk of developing esophageal cancer. Cancer Epidemiol Biomarkers Prev 16:178–181. https://doi.org/10.1158/1055-9965.EPI-06-0542

    Article  CAS  Google Scholar 

  • Jedrychowski WA, Perera FP, Tang D, Rauh V, Majewska R, Mroz E, Flak E, Stigter L, Spengler J, Camann D, Jacek R (2013) The relationship between prenatal exposure to airborne polycyclic aromatic hydrocarbons (PAHs) and PAH-DNA adducts in cord blood. J Expo Sci Environ Epidemiol 23:371–377. https://doi.org/10.1038/jes.2012.117

    Article  CAS  Google Scholar 

  • Jia CY, Liu YJ, Cong XL, Ma YS, Sun R, Fu D, Lv ZW (2014) Association of glutathione S-transferase M1, T1, and P1 polymorphisms with renal cell carcinoma: evidence from 11 studies. Tumour Biol 35:3867–3873. https://doi.org/10.1007/s13277-013-1513-5

    Article  CAS  Google Scholar 

  • Jin Y, Xu H, Zhang C, Kong Y, Hou Y, Xu Y, Xue S (2010) Combined effects of cigarette smoking, gene polymorphisms and methylations of tumor suppressor genes on non small cell lung cancer: a hospital-based case-control study in China. BMC Cancer 10:–422. https://doi.org/10.1186/1471-2407-10-422

  • Lin DX, Tang YM, Peng Q, Lu SX, Ambrosone CB, Kadlubar FF (1998) Susceptibility to esophageal cancer and genetic polymorphisms in glutathione S-transferases T1, P1, and M1 and cytochrome P450 2E1. Cancer Epidemiol Biomarkers Prev 7:1013–1018

    CAS  Google Scholar 

  • Liu R, Yin L, Pu Y, Li Y, Liang G, Zhang J, Li X (2010) Functional alterations in the glutathione S-transferase family associated with enhanced occurrence of esophageal carcinoma in China. J Toxicol Environ Health A 73:471–482. https://doi.org/10.1080/15287390903523394

    Article  CAS  Google Scholar 

  • Macaluso M, Paggi MG, Giordano A (2003) Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene 22:6472–6478. https://doi.org/10.1038/sj.onc.1206955

    Article  CAS  Google Scholar 

  • Mao WM, Zheng WH, Ling ZQ (2011) Epidemiologic risk factors for esophageal cancer development. Asian Pac J Cancer Prev 12:2461–2466

    Google Scholar 

  • McCarty KM et al (2009) PAH-DNA adducts, cigarette smoking, GST polymorphisms, and breast cancer risk. Environ Health Perspect 117:552–558. https://doi.org/10.1289/ehp.0800119

    Article  CAS  Google Scholar 

  • Moaven O et al (2010) Interactions between glutathione-S-transferase M1, T1 and P1 polymorphisms and smoking, and increased susceptibility to esophageal squamous cell carcinoma. Cancer Epidemiol 34:285–290. https://doi.org/10.1016/j.canep.2010.03.009

    Article  CAS  Google Scholar 

  • Nakajima T, Wang RS, Nimura Y, Pin YM, He M, Vainio H, Murayama N, Aoyama T, Iida F (1996) Expression of cytochrome P450s and glutathione S-transferases in human esophagus with squamous-cell carcinomas. Carcinogenesis 17:1477–1481

    Article  CAS  Google Scholar 

  • Nelson HH et al (1995) Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta. Carcinogenesis 16:1243–1245

    Article  CAS  Google Scholar 

  • Pacchierotti F, Spano M (2015) Environmental impact on DNA methylation in the Germline: state of the art and gaps of knowledge. BioMed Res Int 2015:123484–123423. https://doi.org/10.1155/2015/123484

    Article  CAS  Google Scholar 

  • Pease M, Ling C, Mack WJ, Wang K, Zada G (2013) The role of epigenetic modification in tumorigenesis and progression of pituitary adenomas: a systematic review of the literature. PLoS One 8:e82619. https://doi.org/10.1371/journal.pone.0082619

    Article  CAS  Google Scholar 

  • Phillips DH (1983) Fifty years of benzo(a)pyrene. Nature 303:468–472

    Article  CAS  Google Scholar 

  • Preston RJ (2007) Epigenetic processes and cancer risk assessment. Mutat Res 616:7–10. https://doi.org/10.1016/j.mrfmmm.2006.11.002

    Article  CAS  Google Scholar 

  • Pulling LC, Vuillemenot BR, Hutt JA, Devereux TR, Belinsky SA (2004) Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res 64:3844–3848. https://doi.org/10.1158/0008-5472.CAN-03-2119

    Article  CAS  Google Scholar 

  • Rappaport SM, Waidyanatha S, Serdar B (2004) Naphthalene and its biomarkers as measures of occupational exposure to polycyclic aromatic hydrocarbons. J Environ Monit 6:413–416. https://doi.org/10.1039/b314088c

    Article  CAS  Google Scholar 

  • Reszka E, Wasowicz W (2001) Significance of genetic polymorphisms in glutathione S-transferase multigene family and lung cancer risk. Int J Occup Med Environ Health 14:99–113

    CAS  Google Scholar 

  • Roshandel G, Semnani S, Malekzadeh R, Dawsey SM (2012) Polycyclic aromatic hydrocarbons and esophageal squamous cell carcinoma Arch Iran Med 15:713-722 doi: 0121511/AIM.0013

  • Ruchirawa M, Mahidol C, Tangjarukij C, Pui-ock S, Jensen O, Kampeerawipakorn O, Tuntaviroon J, Aramphongphan A, Autrup H (2002) Exposure to genotoxins present in ambient air in Bangkok, Thailand--particle associated polycyclic aromatic hydrocarbons and biomarkers. Sci Total Environ 287:121–132

    Article  Google Scholar 

  • Ruiz-Hernandez A, Kuo CC, Rentero-Garrido P, Tang WY, Redon J, Ordovas JM, Navas-Acien A, Tellez-Plaza M (2015) Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin Epigenetics 7:55. https://doi.org/10.1186/s13148-015-0055-7

    Article  CAS  Google Scholar 

  • Sato F, Meltzer SJ (2006) CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer 106:483–493. https://doi.org/10.1002/cncr.21657

    Article  CAS  Google Scholar 

  • Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Cogliano V, Group WHOIAfRoCMW (2005) Carcinogenicity of polycyclic aromatic hydrocarbons. Lancet Oncol 6:931–932

    Article  Google Scholar 

  • Sundberg K, Johansson AS, Stenberg G, Widersten M, Seidel A, Mannervik B, Jernstrom B (1998) Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis 19:433–436

    Article  CAS  Google Scholar 

  • Taghavi N et al (2010) p16INK4a hypermethylation and p53, p16 and MDM2 protein expression in esophageal squamous cell carcinoma. BMC Cancer 10:–138. https://doi.org/10.1186/1471-2407-10-138

  • Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26:339–362. https://doi.org/10.1080/10590500802494538

    Article  CAS  Google Scholar 

  • Zhang Y (2013) Epidemiology of esophageal cancer. World J Gastroenterol 19:5598–5606. https://doi.org/10.3748/wjg.v19.i34.5598

    Article  Google Scholar 

  • Zhou C, Li J, Li Q (2017) CDKN2A methylation in esophageal cancer: a meta-analysis. Oncotarget 8:50071–50083. https://doi.org/10.18632/oncotarget.18412

    Article  Google Scholar 

  • Zhuo XG, Watanabe S (1999) Factor analysis of digestive cancer mortality and food consumption in 65 Chinese counties. J Epidemiol 9:275–284

    Article  CAS  Google Scholar 

  • Ziech D, Franco R, Pappa A, Panayiotidis MI (2011) Reactive oxygen species (ROS)--induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 711:167–173. https://doi.org/10.1016/j.mrfmmm.2011.02.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the scientific and technical supports of colleagues at the Division of Human Genetics, Immunology Research Center, and Avicenna Research Institute (Mashhad University of Medical Sciences).

Funding

This study was supported by a grant from the Vice Chancellor for Research at Mashhad University of Medical Sciences (no. 85032) and was part of a M.Sc. student’s dissertation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Abbaszadegan.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by ethic committee of Mashhad University of Medical Science.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forghanifard, M.M., Aarabi, A., Nasiri Aghdam, M. et al. GSTs polymorphisms are associated with epigenetic silencing of CDKN2A gene in esophageal squamous cell carcinoma. Environ Sci Pollut Res 27, 31269–31277 (2020). https://doi.org/10.1007/s11356-020-09408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09408-6

Keywords

Navigation