Skip to main content
Log in

Essential oils from three Algerian medicinal plants (Artemisia campestris, Pulicaria arabica, and Saccocalyx satureioides) as new botanical insecticides?

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Medicinal and aromatic plants represent an outstanding source of green active ingredients for a broad range of real-world applications. In the present study, we investigated the insecticidal potential of the essential oils obtained from three medicinal and aromatic plants of economic importance in Algeria, Artemisia campestris, Pulicaria arabica, and Saccocalyx satureioides. Gas chromatography coupled with mass spectrometry (GC-MS) was used to study the essential oil chemical compositions. The three essential oils were tested against a mosquito vectoring filariasis and arboviruses, i.e., Culex quinquefasciatus, a fly pest acting also as pathogens vector, Musca domestica, and an agricultural moth pest, i.e., Spodoptera littoralis, using WHO and topical application methods, respectively. The essential oil from A. campestris, containing β-pinene (15.2%), α-pinene (11.2%), myrcene (10.3%), germacrene D (9.0%) (Z)-β-ocimene (8.1%) and γ-curcumene (6.4%), showed remarkable toxicity against C. quinquefasciatus (LC50 of 45.8 mg L−1) and moderate effects (LD50 of 99.8 μg adult−1) against M. domestica. Those from P. arabica and S. satureioides, containing epi-α-cadinol (23.9%), δ-cadinene (21.1%), α-cadinol (19.8%) and germacrene D-4-ol (8.4%), and thymol (25.6%), α-terpineol (24.6%), borneol (17.4%) and p-cymene (11.4%), respectively, were more active on S. littoralis showing LD50 values of 68.9 and 61.2 μg larva−1, respectively. Based on our results, the essential oil from A. campestris may be further considered a candidate ingredient for developing botanical larvicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Abed NE, Harzallah-Skhiri F, Boughalleb N (2010) Chemical composition and antifungal activity of the essential oil of Pulicaria arabica (L.) Cass. from Tunisia. Agric Segment 1:1530–1534

    Google Scholar 

  • Abidi A, Sebai E, Dhibi M, Alimi D, Rekik M, B’chir F, Maizels RM, Akkari H (2018) Chemical analyses and anthelmintic effects of Artemisia campestris essential oil. Vet Parasitol 263:59–65

    CAS  Google Scholar 

  • Akrout A, Chemli R, Simmonds M, Kite G, Hammami M, Chreif I (2003) Seasonal variation of the essential oil of Artemisia campestris L. J Essent Oil Res 15:333–336

    CAS  Google Scholar 

  • Akrout A, El Jani H, Amouri S, Neffati M (2010) Screening of antiradical and antibacterial activities of essential oils of Artemisia campestris L., Artemisia herba alba Asso. and Thymus capitatus Hoff. et Link. growing wild in the southern of Tunisia. Rec Res Sci Tech 2:29–39

    CAS  Google Scholar 

  • Ali SA (2011) Natural products as therapeutic agents for schistosomiasis. Res J Med Plant 5:1–20

    Google Scholar 

  • Allali H, Benmehdi H, Dib MA, Tabti B, Ghalem S, Benabadji N (2008) Phytotherapy of diabetes in West Algeria. Asian J Chem 20:2701–2710

    CAS  Google Scholar 

  • Baba Aissa F (1991) Les plantes médicinales en Algérie. Coédition Bouchene et Addiwane, Alger, p 181

    Google Scholar 

  • Baba Aissa F (1999) Encyclopédie des plantes utiles « Flore d’Algérie et du Maghreb». Librairie moderne, Rouiba, p 368

  • Bakchiche B, Gherib A, Bronze MR, Ghareeb MA (2019) Identification, quantification, and antioxidant activity of hydroalcoholic extract of Artemisia campestris from Algeria. Turk J Pharm Sci 16:234–239

    CAS  Google Scholar 

  • Belhattab R, Boudjouref M, Barroso JG, Pedro LP, Figueirido AC (2011) Essential oil composition from Artemisia campestris grown in Algeria. Adv Environ Biol 5:429–432

    CAS  Google Scholar 

  • Benabed KH (2018) Composition chimique et activité antioxydante des huiles essentielles et extraits phénoliques de deux espèces de la famille des Lamiaceae. Doctorat en Sciences: Biologie-Biochimie Université Kasdi Merbah Ouargla, 126

  • Benahmed M, Djeddi N, Akkal S, Laouar H (2016) Saccocalyx satureioides as corrosion inhibitor for carbon steel in acid solution. Int J Ind Chem 7:109–120

    CAS  Google Scholar 

  • Bendahou M, Benyoucef M, Muselli A, Desjobert JM, Paolini J, Bernardini AF, Costa J (2008) Antimicrobial activity and chemical composition of Saccocalyx satureioides Coss. et Dur. Essential oil and extract obtained by microwave extraction, comparison with hydrodistillation. J Essent Oil Res 20:174–178

  • Bendimerad N, Bekhechi C, Belmekki N, Fernandez X (2009) Chemical analysis and antimicrobial activity of Saccocalyx satureioides Coss. et Dur. essential oil from southwestern Algeria. Int J Essent Oil Ther 3:1–5

    Google Scholar 

  • Benelli G, Beier JC (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91-96

  • Benelli G, Romano D (2017) Mosquito vectors of Zika virus. Entomol Gen 36:309–318

  • Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar FH, Nicoletti M, Canale A, Maggi F (2017) Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind Crop Prod 96:186–195

  • Benelli G, Pavela R, Petrelli R, Cappellacci L, Santini G, Fiorini D, Sut S, Dall’Acqua S, Canale A, Maggi F (2018a) The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind Crop Prod 122:308–315

  • Benelli G, Pavela R, Giordani C, Casettari L, Curzi G, Cappellacci L, Petrelli R, Maggi F (2018b) Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind Crop Prod 112:668–680

  • Benelli G, Maggi F, Canale A, Mehlhorn H (2019a) Lyme disease is on the rise – how about tick repellents? A global view. Entomol Gen 39:61–72

    Google Scholar 

  • Benelli G, Pavela R, Zorzetto C, Sánchez-Mateo CC, Santini G, Canale A, Maggi F (2019b) Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol Gen 39:9–18

    Google Scholar 

  • Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M et al. (2018c) Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. Environ Sci Pollut Res 25:10184–10206. https://doi.org/10.1007/s11356-017-9752-4

  • Biondi DM, Sari M, Zedam A, Ruberto R (2006) Essential oil of Algerian Saccocalyx satureioides Coss. et Durieu. Flavour Fragr J 21:546–548

    CAS  Google Scholar 

  • Boudjelal A, Henchiri C, Sari M, Sarri D, Hendel N, Benkhaled A, Ruberto G (2013) Herbalists and wild medicinal plants in M'Sila - North Algeria - (2013): an ethnopharmacology survey. J Ethnopharmacol 148:395–402

    Google Scholar 

  • Boukhalkhal S, Gourine N, Pinto DC, Silva AM, Yousfi M (2018) Variability of the chemical composition and the antioxidant activity of the essential oils of two subspecies of Artemisia campestris L. growing in Algeria. J Food Measur Charact 12:1829–1842

    Google Scholar 

  • Boumaraf M, Mekkiou R, Benyahia S, Chalchat JC, Chalard P, Benayache F, Benayache S (2016) Essential oil composition of Pulicaria undulata (L.) DC.(Asteraceae) growing in Algeria. Int J Pharmacogn Phytochem Res 8:746–749

    Google Scholar 

  • Boutemak K, Benali N, Moulai-Mostefa N (2017) Optimization of combination of steam distillation and solvent extraction of Artemisia campestris essential oil using RSM. Int Res J Public Environ Health 4:259–269

    Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253

    CAS  Google Scholar 

  • Butler JF, Garcia-Maruniak A, Meek F, Maruniak JE (2010) Wild Florida house flies (Musca domestica) as carriers of pathogenic bacteria. Fla Entomol 93:218–223

    Google Scholar 

  • Chaieb I, Zarrad K, Sellam R, Tayeb W, Hammouda AB, Laarif A, Bouhachem S (2018) Chemical composition and aphicidal potential of Citrus aurantium peel essential oils. Entomol Gen 37:63–75

    Google Scholar 

  • Costa R, De Fina MR, Valentino MR, Rustaiyan A, Dugo P, Dugoa G, Mondelloa L (2009) An investigation on the volatile composition of some Artemisia species from Iran. Flavour Fragr J 24:75–82

    CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    CAS  Google Scholar 

  • Dib I, El Alaoui-Faris FE (2019) Artemisia campestris L.: review on taxonomical aspects, cytogeography, biological activities and bioactive compounds. Biomed Pharmacother 109:1884–1906

    CAS  Google Scholar 

  • Dib I, Fauconnier ML, Sindic M, Belmekki F, Assaidi A, Berrabah M, Mekhfi H, Aziz M, Legssyer A, Bnouham M, Ziyyat A (2017) Chemical composition, vasorelaxant, antioxidant and antiplatelet effects of essential oil of Artemisia campestris L. from Oriental Morocco. BMC Compl Alt Med 17:1–15

    Google Scholar 

  • Djermane N, Gherraf N, Arhab R, Zellagui A, Rebbas K (2016) Chemical composition, antioxidant and antimicrobial activities of the essentialoil of Pulicaria arabica (L.) Cass. D Phar Let 8:1–6

    CAS  Google Scholar 

  • Dobignard A, Chatelain C (2010) Index synonymique de la flore d’Afrique du nord (Pteridophyta, Gymnospermae, Monocotyledoneae), vol 1. Editions des Conservatoire et Jardin botaniques, Genève, p 458

    Google Scholar 

  • Dobignard A, Chatelain C (2011a) Index synonymique de la flore d’Afrique du nord (Dicotyledoneae: Acanthaceae - Asteraceae), vol 2. Editions des Conservatoire et Jardin botaniques, Genève, p 428

    Google Scholar 

  • Dobignard A, Chatelain C (2011b) Index synonymique de la flore d’Afrique du nord (Dicotyledoneae: Balsaminaceae - Euphorbiaceae), vol 3. Editions des Conservatoire et Jardin botaniques, Genève, p 449

    Google Scholar 

  • Finney DJ (1971) Probit Analysis. Cambridge University, London, pp 68–78

    Google Scholar 

  • Ghorab H, Laggoune S, Kabouche A, Semra Z, Kabouche Z (2013) Essential oil composition and antibacterial activity of Artemisia campestris L. from Khenchela (Algeria). Pharm Lett 5:189–192

    CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Hoti SL, Bhattacharyya A, Benelli G (2016) Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol Res 115:807–815

  • Guz N, Cagatay NS, Fotakis EA, Durmusoglu E, Vontas J (2020) Detection of diflubenzuron and pyrethroid resistance mutations in Culex pipiens from Muğla, Turkey. Acta Trop 203:105294

  • Hammiche V, Maiza K (2006) Traditional medicine in Central Sahara: pharmacopoeia of Tassili N’ajjer. J Ethnopharmacol 105:358–367

    Google Scholar 

  • Houicher A, Hechachna H, Özogul F (2016) In vitro determination of the antifungal activity of Artemisia campestris essential oil from Algeria. Int J Food Prop 19:1749–1756

    CAS  Google Scholar 

  • Isman MB (2018) Bridging the gap: moving botanical insecticides from the laboratory to the farm. Ind Crops Prod doi 110:10–14. https://doi.org/10.1016/j.indcrop.2017.07.012

    Article  Google Scholar 

  • Isman MB (2020) Botanical Insecticides in the Twenty-First Century—Fulfilling Their Promise? Annu Rev Entomol 65:233–249

  • Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M (2017) Molecular targets for components of essential oils in the insect nervous system—a review. Molecules 23:34

    Google Scholar 

  • Jankowska M, Wiśniewska J, Fałtynowicz Ł, Lapied B, Stankiewicz M (2019) Menthol Increases Bendiocarb Efficacy Through Activation of Octopamine Receptors and Protein Kinase A. Molecules 24:20–3775

  • Judzentiene A, Budiene J (2014) Variability of Artemisia campestris L. essential oils from Lithuania. J Essent Oil Res 26:328–333

  • Kherkhache H, Benabdelaziz I, Silva AMS, Lahrech MB, Benalia M, Haba H (2018) A new indole alkaloid, antioxidant and antibacterial activities of crude extracts from Saccocalyx satureioides, Natural Product Research https://doi.org/10.1080/14786419.2018.1519817

  • Laouer H, Akkal S, Debarnot C, Canard B, Meierhenrich UJ, Baldovini N (2006) Chemical composition and antimicrobial activity of the essential oil of Saccocalyx satureioides Coss. et Dur. Nat Prod Comm 1645-650

  • Maggi F, Benelli G (2018) Essential oils from aromatic and medicinal plants as effective weapons against mosquito vectors of public health importance. In Mosquito-borne Diseases (pp. 69-129). Springer, Cham

  • Maggi F, Papa F, Giuliani C, Maleci Bini L, Venditti A, Bianco A et al (2015) Essential oil chemotypification and secretory structures of the neglected vegetable Smyrnium olusatrum L.(Apiaceae) growing in Central Italy. Flavour Fragr J 30:139–159

    CAS  Google Scholar 

  • Medila I, Toumi I, Ferhat I, Mehaych R (2017) Biological evaluation of anti-inflammatory activity of Artemisia campestris L. and Spitzelia coronopifolia Desf ethanolic leaves extract. J Chem Pharm Res 9:1–4

    Google Scholar 

  • Miara MD, Bendif H, Rebbas K, Rabah B, Hammou MA, Maggi F (2019) Medicinal plants and their traditional uses in the highland region of Bordj Bou Arreridj (Northeast Algeria). J Herb Med:100262

  • Mohamadi S, Zhao M, Amrani A, Marchioni E, Zama D, Benayache F, Benayache S (2015) On-line screening and identification of antioxidant phenolic compounds of Saccocalyx satureioides Coss. et Dur. Ind Crop Prod 76:910–919

    CAS  Google Scholar 

  • Mossa JS, Hifnawy MS, Al-Yahya MA, Al-Meshal IA, Mekkawi AG (1987) Aromatic plants of Saudi Arabia (part 8), GC/MS analysis of essential oils of Pulicaria arabica and P. undulata. Pharm Biol 25:113–119

  • Mouhajir F (2002) Medecinal plants used by Berber and Arab peoples of Morocco: Ethnopharmacology and phytochemestry. Phd in University of British Columbia, Vancouver, p 245

    Google Scholar 

  • Mustafa AM, Eldahmy SI, Caprioli G, Bramucci M, Quassinti L, Lupidi G et al (2018) Chemical composition and biological activities of the essential oil from Pulicaria undulata (L.) CA Mey. Growing wild in Egypt. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1534107

  • Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373

    Google Scholar 

  • Neffati A, Skandrani I, Ben Sghaier M, Bouhlel I, Kilani S, Ghedira K, Neffati M, Chraief I, Hammami M, Chekir-Ghedira L (2008) Chemical composition, mutagenic and antimutagenic activities of essential oils from (Tunisian) Artemisia campestris and Artemisia herba alba. J Essent Oil Res 20:471–477

    Google Scholar 

  • Palacios SM, Bertoni A, Rossi Y, Santander R, Urzua A (2009a) Efficacy of essential oils from edible plants as insecticides against the house fly, Musca domestica L. Molecules 14:1938–1947

    CAS  Google Scholar 

  • Palacios SM, Bertoni A, Rossi Y, Santander R, Urzua A (2009b) Insecticidal activity of essential oils from native medicinal plants of Central Argentina against the house fly, Musca domestica (L.). Parasitol Res 106:207–212

    Google Scholar 

  • Pavela R (2007) Lethal and sublethal effects of thyme oil (Thymus vulgaris L.) on the house fly (Musca domestica Lin.). J Essent Oil Bear Plants 10:346–356

    CAS  Google Scholar 

  • Pavela R (2010) Acute and synergistic effects of monoterpenoid essential oil compounds on the larvae of Spodoptera littoralis. J Biopest 3:573

    CAS  Google Scholar 

  • Pavela R (2013) Sublethal effects of some essential oils on the cotton leafworm Spodoptera littoralis (Boisduval). J Essent Oil-Bear Plants 15:144–156

    Google Scholar 

  • Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187

    CAS  Google Scholar 

  • Pavela R, Žabka M, Bečvář J, Tříska J, Vrchotová N (2016) New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind Crop Prod 83:275–282

    CAS  Google Scholar 

  • Pavela R, Maggi F, Lupidi G, Mbuntcha H, Woguem V, Womeni HM, Barboni L, Tapondjou LA, Benelli G (2018a) Clausena anisata and Dysphania ambrosioides essential oils: from ethno-medicine to modern uses as effective insecticides. Environ Sci Pollut Res 25:10493–10503. https://doi.org/10.1007/s11356-017-0267-9

  • Pavela R, Maggi F, Cianfaglione K, Bruno M, Benelli G (2018b) Larvicidal activity of essential oils of five Apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem Biodivers 15:e1700382

  • Pavela R, Žabka M, Bečvář J, Tříska J, Vrchotová N (2018c) Effect of foliar nutrition on the essential oil yield of thyme (Thymus vulgaris L.). Ind Crop Prod 112:762–765

  • Pavela R, Maggi F, Iannarelli R, Benelli G (2019a) Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Trop 193:236–271

    CAS  Google Scholar 

  • Pavela R, Pavoni L, Bonacucina G, Cespi M, Kavallieratos NG, Cappellacci L, Petrelli R, Maggi F, Benelli G (2019b) Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J Pest Sci 92:909–921

    Google Scholar 

  • Pavela R, Bartolucci F, Desneux N, Lavoir AV, Canale A, Maggi F, Benelli G (2019c) Chemical profiles and insecticidal efficacy of the essential oils from four Thymus taxa growing in Central-Southern Italy. Ind Crop Prod 138:111460

    CAS  Google Scholar 

  • Pavela R, Maggi F, Petrelli R, Cappellacci L, Buccioni M, Palmieri A, Canale A, Benelli G (2020) Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem Toxicol 136:111037. https://doi.org/10.1016/j.fct.2019.111037

  • Pavoni L, Pavela R, Cespi M, Bonacucina G, Maggi F, Zeni V et al. (2019). Green Micro-and Nanoemulsions for Managing Parasites, Vectors and Pests. Nanomaterials 9:9–1285

  • Petrović M, Popović A, Kojić D, Šućur J, Bursić V, Aćimović M et al (2019) Assessment of toxicity and biochemical response of Tenebrio molitor and Tribolium confusum exposed to Carum carvi essential oil. Entomol Gen 39:333–348

    Google Scholar 

  • Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140:1363–1372

    CAS  Google Scholar 

  • Provencal P (2010) The arabic plant names of Peter Forsskal’s Flora Aegyptiaco-Arabica. ISBN: 978-87-7304-345-5, 161

  • Quezel P, Santa S (1963) Nouvelle flore de l’Algérie et des régions désertiques méridionales, Paris. Centre National de la Recherche Scientifique 2:798–990

    Google Scholar 

  • Ravandeh M, Valizadeh J, Noroozifar M, Khorasani-Motlagh M (2011) Screening of chemical composition of essential oil, mineral elements and antioxidant activity in Pulicaria undulata (L.) CA Mey from Iran. J Med Plants Res 5:2035–2040

    CAS  Google Scholar 

  • Sari M, Dj S, Hendel N, Boudjelal A (2012) Ethnobotanical study of therapeutic plants used to treat arterial hypertension in the Hodna region of Algeria. Global J Res Med Plants Indigen Med 1:411–417

    Google Scholar 

  • Stevenson PC, Isman MB, Belmain SR (2017) Pesticidal plants in Africa: a global vision of new biological control products from local uses. Ind Crop Prod 110:2–9

    Google Scholar 

  • Trabut L (1935) Flore du nord de l’Algérie. Répertoire des noms indigènes des plantes spontanées, cultivées et utilisées dans le nord de l’Afrique, Ed. Collection du Centenaire de l’Algérie 1830-1930, Etudes Scientifiques

  • Ullah F, Gul H, Desneux N, Gao X, Song D (2019a) Imidacloprid-induced hormetic effects on demographic traits of the melon aphid, Aphis gossypii. Entomol Gen 39:325–337

  • Ullah F, Gul H, Desneux N, Qu Y, Xu Xiao X, Khattak AM, Gao X, Song D (2019b) Acetamiprid-induced hormetic effects and vitellogenin gene (Vg) expression in the melon aphid, Aphis gossypii. Entomol Gen 39:259–270

  • van den Hurk AF, Hall-Mendelin S, Jansen CC, Higgs S (2017) Zika virus and Culex quinquefasciatus mosquitoes: a tenuous link. Lancet Infect Dis 17:1014–1016

    Google Scholar 

  • Varikou K, Garantonakis N, Birouraki A (2019) Exposure of Bombus terrestris L. to three different active ingredients and two application methods for olive pest control. Entomol Gen 39:53–60

    Google Scholar 

  • WHO (1996) Report of the WHO informal consultation on the evaluation and testing of insecticides. CTD/WHOPES /IC /96.1. p. 69

  • Wilke ABB, Beier JC, Benelli G (2020) Filariasis vector control down-played due to the belief the drugs will be enough – not true! Entomol Gen doi 40:15–24. https://doi.org/10.1127/entomologia/2019/0776

  • Yavaşoglu Sİ, Yaylagül EÖ, Akıner MM, Ülger C, Çağlar SS, Şimşek FM (2019). Current insecticide resistance status in Anopheles sacharovi and Anopheles superpictus populations in former malaria endemic areas of Turkey. Acta Trop 193:148–157

  • Younsi F, Mehdi S, Aissi O, Rahali N, Jaouadi R, Boussaid M, Messaoud C (2017) Essential oil variability in natural populations of Artemisia campestris (L.) and Artemisia herba-alba (Asso) and incidence on antiacetylcholinesterase and antioxidant activities. Chem Biodivers 14:e1700017

  • Zerroug MM, Laouer H, Strange RN, Nicklin J (2011) The effect of essential oil of Saccocalyx satureioides Coss. Et Dur. on the growth of and the production of Solanapyrone a by Ascochyta rabiei (Pass.) Labr. Adv Environ Biol 5:501–506

  • Znini M, Cristofari G, Majidi L, Paolini J, Desjobert JM, Costa J (2013) Essential oil composition and antifungal activity of Pulicaria mauritanica Coss., against postharvest phytopathogenic fungi in apples. LWT-Food Sci Technol 54:564–569

    CAS  Google Scholar 

  • Zorzetto C, Sánchez-Mateo CC, Rabanal RM, Lupidi G, Petrelli D, Vitali LA et al (2015) Phytochemical analysis and in vitro biological activity of three Hypericum species from the Canary Islands (Hypericum reflexum, Hypericum canariense and Hypericum grandifolium). Fitoterapia 100:95–109

    CAS  Google Scholar 

Download references

Funding

This work was supported by the FAR 2014-2015 (Fondo di Ateneo per la Ricerca) of the University of Camerino. R. Pavela would like to thank the Ministry of Agriculture of the Czech Republic for the financial support of the botanical pesticide and basic substances research. Financial support for this work was provided by the Ministry of Agriculture of the Czech Republic (Project MZE-RO0418). The authors also thank M’sila University (CNEPRU, Comité National d’Evaluation et de Programmation de la Recherche Universitaire) (grant no D01N01UN280120150001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, S., Noui, H., Djamel, S. et al. Essential oils from three Algerian medicinal plants (Artemisia campestris, Pulicaria arabica, and Saccocalyx satureioides) as new botanical insecticides?. Environ Sci Pollut Res 27, 26594–26604 (2020). https://doi.org/10.1007/s11356-020-09064-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09064-w

Keywords

Navigation