Skip to main content
Log in

Spatio-temporal variation and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface dust of Qom metropolis, Iran

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The objective of this research was to determine seasonal variation, distribution, potential health risk, and source identification of 16 polycyclic aromatic hydrocarbons (PAHs) in the surface dust of eight urban areas of Qom. The total levels of 16 PAHs ranged from 364.83 to 739.26 ng g−1, with an average of 478.27 ng g−1. Sites 1 and 8 showed the highest (491.33 ng g−1) and lowest (465.08 ng g−1) concentrations of PAHs, respectively. The PAHs demonstrated the highest and the lowest levels in autumn (553.41 ng g−1) and summer (402.30 ng g−1), respectively. Naphthalene (Nap) showed the highest amounts in all of the areas (75.57 ng g−1). Source apportionment indicated that vehicular emissions and combustion of fossil fuels (liquid fossil fuel, crude oil, and gas) are the main sources of the PAHs. Toxic equivalency quantities (TEQs) index exhibited a mean concentration of 47.41 ng g−1, and benzo[a]pyrene (BaP) and dibenzo[a,h]anthracene (DBA) together contributed more than 80% of TEQ, indicating high risk potential of these compounds. Total incremental lifetime cancer risk (ILCR) presented higher value (2.62 × 10−7) for children than for adults (2.53 × 10−7), one-fold lower than the threshold (10−6). The spatial ILCR for the study areas and seasons showed the highest cancer risk in site 2 and winter. Taken together, the carcinogenic risk of PAHs to children and adults, respectively, through direct ingestion and dermal contact pathways illustrated values close to the baseline, suggesting that more attention should be paid to the issue in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig.3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi S, Keshavarzi B (2019) Source identification of total petroleum hydrocarbons and polycyclic aromatic hydrocarbons in PM10 and street dust of a hot spot for petrochemical production: Asaluyeh County, Iran. Sustain Cities Soc 45:214–230

    Google Scholar 

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Google Scholar 

  • Ali N, Ismail IMI, Khoder M, Shamy M, Alghamdi M, Al Khalaf A, Costa M (2017) Polycyclic aromatic hydrocarbons (PAHs) in the settled dust of automobile workshops, health and carcinogenic risk evaluation. Sci Total Environ 601:478–484

    Google Scholar 

  • Ansari M, Fahiminia M, Malek Ahmadi R et al (2017) Evolution site selection by using an analytical hierarchy process for decentralized wastewater treatment plants in the city of Qom, Iran. J Environ Health Sustain Dev 2(2):284–291

  • Baalbaki R, Nassar J, Salloum S, Shihadeh AL, Lakkis I, Saliba NA (2018) Comparison of atmospheric polycyclic aromatic hydrocarbon levels in three urban areas in Lebanon. Atmos Environ 179:260–267

    CAS  Google Scholar 

  • Belis C, Offenthaler I, Uhl M, Nurmi-Legat J, Bassan R, Jakobi G, Kirchner M, Knoth W, Kräuchi N, Levy W (2009) A comparison of Alpine emissions to forest soil and spruce needle loads for persistent organic pollutants (POPs). Environ Pollut 157:3185–3191

    CAS  Google Scholar 

  • Charlesworth S, De Miguel E, Ordóñez A (2011) A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ Geochem Health 33:103–123

    CAS  Google Scholar 

  • Dejmek J, Solanský I, Benes I, Lenícek J, Srám RJ (2000) The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect 108:1159–1164

    CAS  Google Scholar 

  • Dong TT, Lee B-K (2009) Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 74:1245–1253

    CAS  Google Scholar 

  • EPA US (1991) Risk assessment guidance for superfund, Volume 1, Human health evaluation manual (Part B, Development of risk-based preliminary remediation goals). OSWER

  • Fang G-C, Chang C-N, Wu Y-S, Fu PP-C, Yang I-L, Chen M-H (2004) Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in Central Taiwan, Taichung. Sci Total Environ 327:135–146

    CAS  Google Scholar 

  • Fard RF, Naddafi K, Yunesian M, Nodehi RN, Dehghani MH, Hassanvand MS (2016) The assessment of health impacts and external costs of natural gas-fired power plant of Qom. Environ Sci Pollut Res 23:20922–20936

    Google Scholar 

  • Franco CFJ, de Resende MF, de Almeida FL, Brasil TF, Eberlin MN, Netto ADP (2017) Polycyclic aromatic hydrocarbons (PAHs) in street dust of Rio de Janeiro and Niterói, Brazil: particle size distribution, sources and cancer risk assessment. Sci Total Environ 599:305–313

    Google Scholar 

  • Gope M, Masto RE, George J, Balachandran S (2018) Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Asansol city, India. Sustain Cities Soc 38:616–626

    Google Scholar 

  • Han B, Bai Z, Guo G, Wang F, Li F, Liu Q, Ji Y, Li X, Hu Y (2009) Characterization of PM10 fraction of road dust for polycyclic aromatic hydrocarbons (PAHs) from Anshan, China. J Hazard Mater 170:934–940

    CAS  Google Scholar 

  • Harrison RM, Smith D, Luhana L (1996) Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol 30:825–832

    CAS  Google Scholar 

  • Jiang Y, Hu X, Yves UJ, Zhan H, Wu Y (2014) Status, source and health risk assessment of polycyclic aromatic hydrocarbons in street dust of an industrial city, NW China. Ecotoxicol Environ Saf 106:11–18

    CAS  Google Scholar 

  • Jyethi DS, Khillare P, Sarkar S (2014) Risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in school children. Environ Sci Pollut Res 21:366–378

    CAS  Google Scholar 

  • Kamal A, Malik RN, Martellini T, Cincinelli A (2014) Cancer risk evaluation of brick kiln workers exposed to dust bound PAHs in Punjab province (Pakistan). Sci Total Environ 493:562–570

    CAS  Google Scholar 

  • Kamal A, Malik RN, Martellini T, Cincinelli A (2015) Exposure to dust-bound PAHs and associated carcinogenic risk in primitive and traditional cooking practices in Pakistan. Environ Sci Pollut Res 22:12644–12654

    CAS  Google Scholar 

  • Katsoyiannis A, Breivik K (2014) Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environ Pollut 184:488–494

    CAS  Google Scholar 

  • Khpalwak W, Jadoon WA, Abdel-dayem SM, Sakugawa H (2019) Polycyclic aromatic hydrocarbons in urban road dust, Afghanistan: implications for human health. Chemosphere 218:517–526

    CAS  Google Scholar 

  • Kulkarni P, Venkataraman C (2000) Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmos Environ 34:2785–2790

    CAS  Google Scholar 

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37:1873–1881

    CAS  Google Scholar 

  • Lee B-K, Dong TT (2010) Effects of road characteristics on distribution and toxicity of polycyclic aromatic hydrocarbons in urban road dust of Ulsan, Korea. J Hazard Mater 175:540–550

    CAS  Google Scholar 

  • Li H, Zuo XJ (2013) Speciation and size distribution of copper and zinc in urban road runoff. Bull Environ Contam Toxicol 90:471–476

    CAS  Google Scholar 

  • Liao C-M, Chiang K-C (2006) Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere 63:1610–1619

    CAS  Google Scholar 

  • Liu S, Xia X, Yang L, Shen M, Liu R (2010) Polycyclic aromatic hydrocarbons in urban soils of different land uses in Beijing, China: distribution, sources and their correlation with the city's urbanization history. J Hazard Mater 177:1085–1092

    CAS  Google Scholar 

  • Lu X, Wang L, Li LY, Lei K, Huang L, Kang D (2010) Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater 173:744–749

    CAS  Google Scholar 

  • Ma Y, Liu A, Egodawatta P, McGree J, Goonetilleke A (2017) Quantitative assessment of human health risk posed by polycyclic aromatic hydrocarbons in urban road dust. Sci Total Environ 575:895–904

    CAS  Google Scholar 

  • Maertens RM, Gagné RW, Douglas GR, Zhu J, White PA (2008) Mutagenic and carcinogenic hazards of settled house dust II: Salmonella mutagenicity. Environ Sci Technol 42:1754–1760

    CAS  Google Scholar 

  • Maliszewska-Kordybach B (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem 11:121–127

    Google Scholar 

  • Martellini T, Giannoni M, Lepri L, Katsoyiannis A, Cincinelli A (2012) One year intensive PM2. 5 bound polycyclic aromatic hydrocarbons monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. Environ Pollut 164:252–258

    CAS  Google Scholar 

  • Mesquita SR, van Drooge BL, Barata C, Vieira N, Guimarães L, Piña B (2014) Toxicity of atmospheric particle-bound PAHs: an environmental perspective. Environ Sci Pollut Res 21:11623–11633

    CAS  Google Scholar 

  • Morillo E, Romero A, Madrid L, Villaverde J, Maqueda C (2008) Characterization and sources of PAHs and potentially toxic metals in urban environments of Sevilla (Southern Spain). Water Air Soil Pollut 187:41–51

    CAS  Google Scholar 

  • Mostafa A, Hegazi A, El-Gayar MS, Andersson J (2009) Source characterization and the environmental impact of urban street dusts from Egypt based on hydrocarbon distributions. Fuel 88:95–104

    CAS  Google Scholar 

  • Motelay-Massei A, Ollivon D, Garban B, Chevreuil M (2003) Polycyclic aromatic hydrocarbons in bulk deposition at a suburban site: assessment by principal component analysis of the influence of meteorological parameters. Atmos Environ 37:3135–3146

    CAS  Google Scholar 

  • Najmeddin A, Keshavarzi B, Moore F, Lahijanzadeh A (2018) Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environ Geochem Health 40:1187–1208

    CAS  Google Scholar 

  • Netto ADP, Krauss TM, Cunha IF, Rego EC (2006) PAHs in SD: polycyclic aromatic hydrocarbons levels in street dust in the central area of Niterói City, RJ, Brazil. Water Air Soil Pollut 176:57–67

    Google Scholar 

  • Nisbet IC, Lagoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    CAS  Google Scholar 

  • Oliveira C, Martins N, Tavares J, Pio C, Cerqueira M, Matos M, Silva H, Oliveira C, Camões F (2011) Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere 83:1588–1596

    CAS  Google Scholar 

  • Omar NYM, Abas MRB, Ketuly KA, Tahir NM (2002) Concentrations of PAHs in atmospheric particles (PM-10) and roadside soil particles collected in Kuala Lumpur, Malaysia. Atmos Environ 36:247–254

    CAS  Google Scholar 

  • Pant P, Harrison RM (2013) Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos Environ 77:78–97

    CAS  Google Scholar 

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924

    CAS  Google Scholar 

  • Peng C, Chen W, Liao X, Wang M, Ouyang Z, Jiao W, Bai Y (2011) Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environ Pollut 159:802–808

    CAS  Google Scholar 

  • Perera FP, Rauh V, Whyatt RM, Tsai W-Y, Tang D, Diaz D, Hoepner L, Barr D, Tu Y-H, Camann D (2006) Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect 114:1287–1292

    CAS  Google Scholar 

  • Pindado O, Perez RM, García S, Sanchez M, Galan P, Fernandez M (2009) Characterization and sources assignation of PM2. 5 organic aerosol in a rural area of Spain. Atmos Environ 43:2796–2803

    CAS  Google Scholar 

  • Puy-Alquiza MJ, Reyes V, Wrobel K, Wrobel K, Elguera JCT, Miranda-Aviles R (2016) Polycyclic aromatic hydrocarbons in urban tunnels of Guanajuato city (Mexico) measured in deposited dust particles and in transplanted lichen Xanthoparmelia mexicana (Gyeln.) Hale. Environ Sci Pollut Res 23:11947–11956

    CAS  Google Scholar 

  • Qi H, Li W-L, Zhu N-Z, Ma W-L, Liu L-Y, Zhang F, Li Y-F (2014) Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China. Sci Total Environ 491:100–107

    Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    CAS  Google Scholar 

  • Saeedi M, Li LY, Salmanzadeh M (2012) Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater 227:9–17

    Google Scholar 

  • Samburova V, Connolly J, Gyawali M, Yatavelli RL, Watts AC, Chakrabarty RK, Zielinska B, Moosmüller H, Khlystov A (2016) Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Sci Total Environ 568:391–401

    CAS  Google Scholar 

  • Sánchez-Soberón F, van Drooge BL, Rovira J, Grimalt JO, Nadal M, Domingo JL, Schuhmacher M (2016) Size-distribution of airborne polycyclic aromatic hydrocarbons and other organic source markers in the surroundings of a cement plant powered with alternative fuels. Sci Total Environ 550:1057–1064

    Google Scholar 

  • Sarigiannis DΑ, Karakitsios SP, Zikopoulos D, Nikolaki S, Kermenidou M (2015) Lung cancer risk from PAHs emitted from biomass combustion. Environ Res 137:147–156

    CAS  Google Scholar 

  • Shamabadi N, Bakhtiari H, Kochakian N, Farahani M (2015) The investigation and designing of an onsite grey water treatment systems at Hazrat-e-Masoumeh University, Qom, IRAN. Energy Procedia 74:1337–1346

    Google Scholar 

  • Skrbic B, Durisic-Mladenovic N, Zivancev J, Tadic D (2019) Seasonal occurrence and cancer risk assessment of polycyclic aromatic hydrocarbons in street dust from the Novi Sad city, Serbia. Sci Total Environ 647:191–203

    CAS  Google Scholar 

  • Škrbić B, Đurišić-Mladenović N, Živančev J, Tadić Đ (2019) Seasonal occurrence and cancer risk assessment of polycyclic aromatic hydrocarbons in street dust from the Novi Sad city, Serbia. Sci Total Environ 647:191–203

    Google Scholar 

  • Škrbić BD, Đurišić-Mladenović N, Tadić ĐJ, Cvejanov JĐ (2017) Polycyclic aromatic hydrocarbons in urban soil of Novi Sad, Serbia: occurrence and cancer risk assessment. Environ Sci Pollut Res 24:16148–16159

    Google Scholar 

  • Slezakova K, Oliveira M, Madureira J, Fernandes EO, Delerue-Matos C, Morais S, Pereira MC (2017) Polycyclic aromatic hydrocarbons (PAH) in Portuguese educational settings: a comparison between preschools and elementary schools. J Toxic Environ Health A 80:630–640

    CAS  Google Scholar 

  • Soltani N, Keshavarzi B, Moore F, Tavakol T, Lahijanzadeh AR, Jaafarzadeh N, Kermani M (2015) Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci Total Environ 505:712–723

    CAS  Google Scholar 

  • Trujillo-González JM, Torres-Mora MA, Keesstra S, Brevik EC, Jiménez-Ballesta R (2016) Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci Total Environ 553:636–642

    Google Scholar 

  • Tue NM, Takahashi S, Suzuki G, Viet PH, Subramanian A, Bulbule KA, Parthasarathy P, Ramanathan A, Tanabe S (2014) Methylated and unsubstituted polycyclic aromatic hydrocarbons in street dust from Vietnam and India: occurrence, distribution and in vitro toxicity evaluation. Environ Pollut 194:272–280

    Google Scholar 

  • US EPA E (1997) Exposure factors handbook (Vol. 1). United States Environmental Protection Agency, Cincinnati

  • Wang L, Wang L, Tao W, Smardon RC, Shi X, Lu X (2016) Characteristics, sources, and health risk of polycyclic aromatic hydrocarbons in urban surface dust: a case study of the city of Xi’an in Northwest China. Environ Sci Pollut Res 23:13389–13402

    CAS  Google Scholar 

  • Wang W, Huang MJ, Kang Y, Wang HS, Leung AO, Cheung KC, Wong MH (2011) Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci Total Environ 409:4519–4527

    CAS  Google Scholar 

  • Wei C, Bandowe BAM, Han Y, Cao J, Zhan C, Wilcke W (2015) Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere 134:512–520

    CAS  Google Scholar 

  • Xu L, Shu X, Hollert H (2017) Reprint of: aggregate risk assessment of polycyclic aromatic hydrocarbons from dust in an urban human settlement environment. J Clean Prod 163:S199–S208

    Google Scholar 

  • Xu LY, Shu X (2014) Aggregate human health risk assessment from dust of daily life in the urban environment of Beijing. Risk Anal 34:670–682

    CAS  Google Scholar 

  • Yadav IC, Devi NL, Li J, Zhang G (2018) Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: implication on source apportionment and toxicological effect. Sci Total Environ 616-617:223–235

    CAS  Google Scholar 

  • Yang Q, Chen H, Li B (2015) Polycyclic aromatic hydrocarbons (PAHs) in indoor dusts of Guizhou, southwest of China: status, sources and potential human health risk. PLoS One 10:e0118141

    Google Scholar 

  • Yıldırım G, Tokalıoğlu Ş (2016) Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis. Ecotoxicol Environ Saf 124:369–376

    Google Scholar 

  • Yu B, Xie X, Ma LQ, Kan H, Zhou Q (2014) Source, distribution, and health risk assessment of polycyclic aromatic hydrocarbons in urban street dust from Tianjin, China. Environ Sci Pollut Res 21:2817–2825

    CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    CAS  Google Scholar 

  • Zhang K, Zhang B-Z, Li S-M, Zhang L-M, Staebler R, Zeng EY (2012) Diurnal and seasonal variability in size-dependent atmospheric deposition fluxes of polycyclic aromatic hydrocarbons in an urban center. Atmos Environ 57:41–48

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Tarbiat Modares University of Iran. Special thanks are due to Claudio A. Belis for his critical review of the manuscript. Our appreciation is extended to “Hamid Salari Joo” for his Academic English Language Editing Service during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Davoudi.

Additional information

Responsible Editor: Constantini Samara

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoudi, M., Esmaili-Sari, A., Bahramifar, N. et al. Spatio-temporal variation and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface dust of Qom metropolis, Iran. Environ Sci Pollut Res 28, 9276–9289 (2021). https://doi.org/10.1007/s11356-020-08863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08863-5

Keywords

Navigation