Skip to main content
Log in

Enhancement in the selectivity of O2/N2 via ZIF-8/CA mixed-matrix membranes and the development of a thermodynamic model to predict the permeability of gases

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Zeolitic imidazolate framework-8 (ZIF-8) has a sodalite topology. ZIF-8 is composed of zinc ion coordinated by four imidazolate rings. The pore aperture of ZIF-8 is 3.4 Å, which readily retains large gas molecules like N2. In this work, mixed-matrix membranes (MMMs) have been fabricated by utilizing ZIF-8 and pristine cellulose acetate (CA) for O2/N2 separation. Membranes of pristine CA and MMMs of ZIF-8/CA at various ZIF-8 concentrations were prepared in tetrahydrofuran (THF). Permeation results of the fabricated membranes revealed increasing selectivity for O2/N2 with increasing pressure as well as ZIF-8/CA concentration up to 5% (w/w). The selectivity of O2/N2 increased 4 times for MMMs containing 5% (w/w) of ZIF-8/CA as compared with the pristine CA membrane. A thermodynamic model has also been developed to predict the permeability of gases through polymeric membranes. The results were compared with literature data as well as the pristine CA membrane produced in this work for model validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40:321–348

    CAS  Google Scholar 

  • Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146

    CAS  Google Scholar 

  • Baker RW, Low BT (2014) Gas separation membrane materials: a perspective. Macromolecules 47:6999–7013

    CAS  Google Scholar 

  • Barrer RM (1942) Permeability in relation to viscosity and structure of rubber. Rubber Chem Technol 15:537–544

    CAS  Google Scholar 

  • Car A, Stropnik C, Peinemann K-V (2006) Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation. Desalination 200:424–426

    CAS  Google Scholar 

  • Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes–state of their development and perspective. Microporous Mesoporous Mater 38:3–24

    CAS  Google Scholar 

  • Chung T-S, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507

    CAS  Google Scholar 

  • Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer–inorganic nanocomposite membranes for gas separation. Sep Purif Technol 55:281–291

    CAS  Google Scholar 

  • Dimarzio EA, Gibbs JH (1963) Molecular interpretation of glass temperature depression by plasticizers. J Polym Sci Part A 1:1417–1428

    CAS  Google Scholar 

  • Dong G, Li H, Chen V (2013) Challenges and opportunities for mixed-matrix membranes for gas separation. J Mater Chem A 1:4610–4630

    CAS  Google Scholar 

  • Esteves IA, Mota JP (2007) Gas separation by a novel hybrid membrane/pressure swing adsorption process. Ind Eng Chem Res 46:5723–5733

    CAS  Google Scholar 

  • Farrukh S, Javed S, Hussain A, Mujahid M (2014a) Blending of TiO2 nanoparticles with cellulose acetate polymer: to study the effect on morphology and gas permeation of blended membranes. Asia Pac J Chem Eng 9:543–551

    CAS  Google Scholar 

  • Farrukh S, Minhas FT, Hussain A, Memon S, Bhanger M, Mujahid M (2014b) Preparation, characterization, and applicability of novel calix [4] arene-based cellulose acetate membranes in gas permeation. J Appl Polym Sci 131

  • Flory P (1953) J, Am, Chem. Sac. 63 (1941) 3091 c) FLORY P. J., Principles of polymer chemistry. Comell University Press, Ithaca,

  • Ghosal K, Freeman BD (1994) Gas separation using polymer membranes: an overview. Polym Adv Technol 5:673–697

    CAS  Google Scholar 

  • Gibbs JH, DiMarzio EA (1958) Nature of the glass transition and the glassy state. J Chem Physics 28:373–383

    CAS  Google Scholar 

  • Haraya K, Obata K, Hakuta T, Yoshitome H (1986a) Permeation of gases through a symmetric cellulose acetate membrane. J Chem Eng Jpn 19:464–466

    CAS  Google Scholar 

  • Haraya K, Obata K, Hakuta T, Yoshitome H (1986b) The permeation of gases through asymmetric cellulose acetate membranes. J Chem Eng Jpn 19:431–436

    CAS  Google Scholar 

  • Hayashi H, Cote AP, Furukawa H, O’Keeffe M, Yaghi OM (2007) Zeolite A imidazolate frameworks. Nat Mater 6:501

    CAS  Google Scholar 

  • Hillock AM, Miller SJ, Koros WJ (2008) Crosslinked mixed matrix membranes for the purification of natural gas: effects of sieve surface modification. J Membr Sci 314:193–199

    CAS  Google Scholar 

  • Himma NF, Wardani AK, Prasetya N, Aryanti PT, Wenten IG (2018) Recent progress and challenges in membrane-based O2/N2 separation. Rev Chem Eng

  • Hu C-C, Liu T-C, Lee K-R, Ruaan R-C, Lai J-Y (2006) Zeolite-filled PMMA composite membranes: influence of coupling agent addition on gas separation properties. Desalination 193:14–24

    CAS  Google Scholar 

  • Hu Y, Kazemian H, Rohani S, Huang Y, Song Y (2011) In situ high pressure study of ZIF-8 by FTIR spectroscopy Chem Commun 47:12694–12696

  • Huang XC, Lin YY, Zhang JP, Chen XM (2006a) Ligand-directed strategy for zeolite-type metal–organic frameworks: zinc (II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed 45:1557–1559

    CAS  Google Scholar 

  • Huang Z, Li Y, Wen R, May Teoh M, Kulprathipanja S (2006b) Enhanced gas separation properties by using nanostructured PES-zeolite 4A mixed matrix membranes. J Appl Polym Sci 101:3800–3805

    CAS  Google Scholar 

  • Iqbal H, Farrukh S, Hussain A, Hassan A, Hailegiorgis SM (2019) Pursuance of Piper Nigrum and Cinnamomum verum on poly vinyl alcohol-starch hydrogel membrane. J Chem Soc Pak 41:489–500

    CAS  Google Scholar 

  • Isfahani AP, Ghalei B, Bagheri R, Kinoshita Y, Kitagawa H, Sivaniah E, Sadeghi M (2016a) Polyurethane gas separation membranes with ethereal bonds in the hard segments. J Membr Sci 513:58–66

    CAS  Google Scholar 

  • Isfahani AP, Ghalei B, Wakimoto K, Bagheri R, Sivaniah E, Sadeghi M (2016b) Plasticization resistant crosslinked polyurethane gas separation membranes. J Mater Chem A 4:17431–17439

    CAS  Google Scholar 

  • Ismail AF, David L (2001) A review on the latest development of carbon membranes for gas separation. J Membr Sci 193:1–18

    CAS  Google Scholar 

  • Kim JY, Bae YC (1999a) Configurational entropy effect for conductivities of solid polymer electrolytes. J Appl Polym Sci 73:1891–1897

    CAS  Google Scholar 

  • Kim JY, Bae YC (1999b) Configurational entropy effect for the conductivity of semicrystalline polymer/salt systems. Fluid Phase Equilib 163:291–302

    CAS  Google Scholar 

  • Kim GM, Michler G, Gahleitner M, Fiebig J (1996) Relationship between morphology and micromechanical toughening mechanisms in modified polypropylenes. J Appl Polym Sci 60:1391–1403

    CAS  Google Scholar 

  • Kim JY, Hong SU, Won J, Kang YS (2000) Molecular model and analysis of glass transition temperatures for polymer− diluent− salt systems. Macromolecules 33:3161–3165

    CAS  Google Scholar 

  • Kim S, Marand E, Ida J, Guliants VV (2006) Polysulfone and mesoporous molecular sieve MCM-48 mixed matrix membranes for gas separation. Chem Mater 18:1149–1155

    CAS  Google Scholar 

  • Kim S, Chen L, Johnson JK, Marand E (2007) Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. J Membr Sci 294:147–158

    CAS  Google Scholar 

  • Koros WJ (2002) Gas separation membranes: needs for combined materials science and processing approaches. In: Macromolecular symposia. vol 1. Wiley Online Library, pp 13–22

  • Koros WJ, Fleming G (1993) Membrane-based gas separation. J Membr Sci 83:1–80

    CAS  Google Scholar 

  • Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membr Sci 175:181–196

    CAS  Google Scholar 

  • Koros W, Fleming G, Jordan S, Kim T, Hoehn H (1988) Polymeric membrane materials for solution-diffusion based permeation separations. Prog Polym Sci 13:339–401

    CAS  Google Scholar 

  • Lee DK, Kim YW, Lee KJ, Min BR, Kim JH (2007) Thermodynamic model of gas permeability in polymer membranes. J Polym Sci B Polym Phys 45:661–665

    CAS  Google Scholar 

  • Li J, Wang S, Nagai K, Nakagawa T, Mau AW (1998) Effect of polyethyleneglycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes. J Membr Sci 138:143–152

    CAS  Google Scholar 

  • Li Y, Chung T-S, Cao C, Kulprathipanja S (2005) The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. J Membr Sci 260:45–55

    CAS  Google Scholar 

  • Li Y, Guan H-M, Chung T-S, Kulprathipanja S (2006) Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite a mixed matrix membranes. J Membr Sci 275:17–28

    CAS  Google Scholar 

  • Li Y, Chung TS, Kulprathipanja S (2007) Novel Ag+−zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. AICHE J 53:610–616

    CAS  Google Scholar 

  • Ma S, Sun D, Simmons JM, Collier CD, Yuan D, Zhou H-C (2008) Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130:1012–1016

    CAS  Google Scholar 

  • MacFarlane D, Sun J, Meakin P, Fasoulopoulos P, Hey J, Forsyth M (1995) Structure-property relationships in plasticized solid polymer electrolytes. Electrochim Acta 40:2131–2136

    CAS  Google Scholar 

  • Mahajan R, Burns R, Schaeffer M, Koros WJ (2002) Challenges in forming successful mixed matrix membranes with rigid polymeric materials. J Appl Polym Sci 86:881–890

    CAS  Google Scholar 

  • Mark JE (2009) Polymer data handbook. Oxford university press, Oxford

    Google Scholar 

  • Matteucci S, Yampolskii Y, Freeman BD, Pinnau I (2006) Transport of gases and vapors in glassy and rubbery polymers. Mater Sci Membr Gas Vap Sep 1:1–2

    Google Scholar 

  • Merkel T, Bondar V, Nagai K, Freeman B, Pinnau I (2000) Gas sorption, diffusion, and permeation in poly (dimethylsiloxane). J Polym Sci B Polym Phys 38:415–434

    CAS  Google Scholar 

  • Mersmann A, Fill B, Hartmann R, Maurer S (2000) The potential of energy saving by gas-phase adsorption processes. Chem Eng Technol 23:937–944

    CAS  Google Scholar 

  • Minhas FT, Farrukh S, Hussain A, Mujahid M (2015) Comparison of silica and novel functionalized silica-based cellulose acetate hybrid membranes in gas permeation study. J Polym Res 22:63

    Google Scholar 

  • Moore TT, Koros WJ (2007) Gas sorption in polymers, molecular sieves, and mixed matrix membranes. J Appl Polym Sci 104:4053–4059

    CAS  Google Scholar 

  • Moore TT, Koros WJ (2008) Sorption in zeolites modified for use in organic− inorganic hybrid membranes. Ind Eng Chem Res 47:591–598

    CAS  Google Scholar 

  • Moore TT, Vo T, Mahajan R, Kulkarni S, Hasse D, Koros WJ (2003) Effect of humidified feeds on oxygen permeability of mixed matrix membranes. J Appl Polym Sci 90:1574–1580

    CAS  Google Scholar 

  • Moore TT, Mahajan R, Vu DQ, Koros WJ (2004) Hybrid membrane materials comprising organic polymers with rigid dispersed phases. AICHE J 50:311–321

    CAS  Google Scholar 

  • Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J (2006) Metal–organic frameworks—prospective industrial applications. J Mater Chem 16:626–636

    CAS  Google Scholar 

  • Murali RS, Sankarshana T, Sridhar S (2013) Air separation by polymer-based membrane technology. Sep Purif Rev 42:130–186

    CAS  Google Scholar 

  • Ordonez MJC, Balkus KJ Jr, Ferraris JP, Musselman IH (2010) Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J Membr Sci 361:28–37

    CAS  Google Scholar 

  • Pandey P, Chauhan R (2001) Membranes for gas separation. Prog Polym Sci 26:853–893

    CAS  Google Scholar 

  • Park KS et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186–10191

    CAS  Google Scholar 

  • Patel R, Park JT, Hong HP, Kim JH, Min BR (2011) Use of block copolymer as compatibilizer in polyimide/zeolite composite membranes. Polym Adv Technol 22:768–772

    CAS  Google Scholar 

  • Perez EV, Balkus KJ Jr, Ferraris JP, Musselman IH (2009) Mixed-matrix membranes containing MOF-5 for gas separations. J Membr Sci 328:165–173

    CAS  Google Scholar 

  • Rehman A, Farrukh S, Hussain A, Pervaiz E (2019) Synthesis and effect of metal–organic frame works on CO2 adsorption capacity at various pressures: a contemplating review. Energy & Environment:0958305X19865352

  • Reid BD, Ruiz-Trevino FA, Musselman IH, Balkus KJ, Ferraris JP (2001) Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41. Chem Mater 13:2366–2373

    CAS  Google Scholar 

  • Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    CAS  Google Scholar 

  • Rowe BW, Robeson LM, Freeman BD, Paul DR (2010) Influence of temperature on the upper bound: Theoretical considerations and comparison with experimental results. J Membr Sci 360:58–69

    CAS  Google Scholar 

  • Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54:4729–4761

    CAS  Google Scholar 

  • Sen D, Kalipcilar H, Yilmaz L (2006) Development of zeolite filled polycarbonate mixed matrix gas separation membranes. Desalination 200:222–224

    CAS  Google Scholar 

  • Sheffel JA, Tsapatsis M (2007) A model for the performance of microporous mixed matrix membranes with oriented selective flakes. J Membr Sci 295:50–70

    CAS  Google Scholar 

  • Shu S, Husain S, Koros WJ (2007) A general strategy for adhesion enhancement in polymeric composites by formation of nanostructured particle surfaces. J Phys Chem C 111:652–657

    CAS  Google Scholar 

  • Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94:1–65

    Google Scholar 

  • Van Amerongen GJ (1946) The permeability of different rubbers to gases and its relation to diffusivity and solubility. J Appl Phys 17:972–985

    Google Scholar 

  • Van Amerongen G (1964) Diffusion in elastomers. Rubber Chem Technol 37:1065–1152

    Google Scholar 

  • van de Graaf JM, van der Bijl E, Stol A, Kapteijn F, Moulijn JA (1998) Effect of operating conditions and membrane quality on the separation performance of composite silicalite-1 membranes. Ind Eng Chem Res 37:4071–4083

    Google Scholar 

  • Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam

    Google Scholar 

  • Vu DQ, Koros WJ, Miller SJ (2003a) Mixed matrix membranes using carbon molecular sieves: I. preparation and experimental results. J Membr Sci 211:311–334

    CAS  Google Scholar 

  • Vu DQ, Koros WJ, Miller SJ (2003b) Mixed matrix membranes using carbon molecular sieves: II. modeling permeation behavior. J Membr Sci 211:335–348

    CAS  Google Scholar 

  • Weitkamp J, Hunger M, Ceika J, van Bekkum H, Corma A, Schuth F (2007) Introduction to zeolite science and practice. Stud Surf Sci Catal 168:787–835

    CAS  Google Scholar 

  • Yong HH, Park HC, Kang YS, Won J, Kim WN (2001) Zeolite-filled polyimide membrane containing 2, 4, 6-triaminopyrimidine. J Membr Sci 188:151–163

    CAS  Google Scholar 

  • Zhang MQ, Rong MZ, Zhang HB, Friedrich K (2003) Mechanical properties of low nano-silica filled high density polyethylene composites. Polym Eng Sci 43:490–500

    CAS  Google Scholar 

  • Zhang Y, Musselman IH, Ferraris JP, Balkus KJ Jr (2008a) Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS. J Membr Sci 313:170–181

    CAS  Google Scholar 

  • Zhang Y, Musselman IH, Ferraris JP, Balkus KJ (2008b) Gas permeability properties of mixed-matrix matrimid membranes containing a carbon aerogel: a material with both micropores and mesopores. Ind Eng Chem Res 47:2794–2802

    CAS  Google Scholar 

  • Zhou K, Mousavi B, Luo Z, Phatanasri S, Chaemchuen S, Verpoort F (2017) Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J Mater Chem A 5:952–957

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Farrukh.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, S.U., Hussain, A., Farrukh, S. et al. Enhancement in the selectivity of O2/N2 via ZIF-8/CA mixed-matrix membranes and the development of a thermodynamic model to predict the permeability of gases. Environ Sci Pollut Res 27, 24413–24429 (2020). https://doi.org/10.1007/s11356-020-08778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08778-1

Keywords

Navigation