Skip to main content

Advertisement

Log in

Differences of the microbial community structures and predicted metabolic potentials in the lake, river, and wetland sediments in Dongping Lake Basin

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In freshwater ecosystems, wetlands are generally distinguished from deep-water ecosystems by 2-m water level as boundary. However, the difference of sediment microbial communities between wetlands and deep-water ecosystems is still unclear. We combined 16S rRNA gene sequencing and community metabolic prediction to compare sediment microbial communities and predicted metabolic genes of wetlands (natural and constructed wetlands) and deep-water ecosystems (river and lake) along with environmental factors in summer and autumn in Dongping Lake Basin. Results showed that the deep-water ecosystems had significantly higher community richness than the wetlands in autumn in the freshwater basin, which was mostly related to the pH of sediments. However, no significant difference in community richness was found in summer. Besides, the composition of both predicted metabolic genes and microbial communities was significantly affected by dissolved organic carbon (DOC) and dissolved oxygen (DO). The wetlands exhibited high predicted gene abundances related to xenobiotic biodegradation possibly due to the high DOC or DO level. Compared with the wetlands, most of the deep-water ecosystems exhibited high predicted gene abundances related to element (carbon, nitrogen, and sulfur) metabolism possibly due to the low DOC and DO levels in the freshwater basin. This study can expand the knowledge of ecological function distribution and detoxification mechanism of microbial communities in freshwater ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armstrong J, Armstrong W (2001) Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. Am J Bot 88:1359–1370

    CAS  Google Scholar 

  • Arzayus KM, Canuel EA (2005) Organic matter degradation in sediments of the York River estuary: effects of biological vs. physical mixing. Geochim Cosmochim Acta 69:455–464

    CAS  Google Scholar 

  • Barberán A, Bates S, Casamayor E, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351

    Google Scholar 

  • Bates S, Berg-Lyons D, Caporaso J, Walters W, Knight R, Fiere RN (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917

    CAS  Google Scholar 

  • Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Saf 3:1–20

    CAS  Google Scholar 

  • Bezbaruah AN, Zhang TC (2004) pH, redox, and oxygen microprofiles in rhizosphere of bulrush (Scirpus validus) in a constructed wetland treating municipal wastewater. Biotechnol Bioeng 88:60–70

    CAS  Google Scholar 

  • Bier RL, Voss KA, Bernhardt ES (2015) Bacterial community responses to a gradient of alkaline mountaintop mine drainage in Central Appalachian streams. ISME J 9:1378–1390

    CAS  Google Scholar 

  • Borsodi AK, Makk J, Rusznyák A, Vajna BTG, Márialigeti K (2007) Phenotypic characterization and molecular taxonomic studies on Bacillus and related isolates from Phragmites australis periphyton. Aquat Bot 86:243–252

    CAS  Google Scholar 

  • Burgoyne L, Koh LY, Catcheside D (2017) Arbitrarily primed PCR for comparison of meta genomes and extracting useful loci from them. In: Domingues L (ed) PCR. Methods in molecular biology, vol 1620. Springer, New York

    Google Scholar 

  • Caffrey JM, Bano N, Kalanetra K, Hollibaugh JT (2007) Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME J 1:660–662

    Google Scholar 

  • Cao Q, Wang H, Chen X, Wang R, Liu J (2017) Composition and distribution of microbial communities in natural river wetlands and corresponding constructed wetlands. Ecol Eng 98:40–48

    Google Scholar 

  • Collins CG, Carey CJ, Aronson EL, Kopp CW, Diez JM (2016) Direct and indirect effects of native range expansion on soil microbial community structure and function. J Ecol 104:1271–1283

    Google Scholar 

  • Constanza R, D’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neilltt RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Google Scholar 

  • Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service, Washington

    Google Scholar 

  • Craine JM, Fierer N, McLauchlan KK, Elmore AJ (2012) Reduction of the temperature sensitivity of soil organic matter decomposition with sustained temperature increase. Biogeochemistry 113:359–368

    Google Scholar 

  • Dar SA, Kleerebezem R, Stams AJM, Kuenen JG, Muyzer G (2008) Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl Microbiol Biotechnol 78:1045–1055

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  Google Scholar 

  • Eggen RIL (1994) Regulated gene expression in methanogens. FEMS Microbiol Rev 15:251–260

    CAS  Google Scholar 

  • Elgetti Brodersen K, Koren K, Lichtenberg M, Kühl M (2016) Nanoparticle-based measurements of pH and O2 dynamics in the rhizosphere of Zostera marina L.: effects of temperature elevation and light-dark transitions. Plant Cell Environ 39:1619–1630

    CAS  Google Scholar 

  • Fang J, Zhao R, Cao Q, Quan Q, Sun R, Liu J (2019) Effects of emergent aquatic plants on nitrogen transformation processes and related microorganisms in a constructed wetland in northern China. Plant Soil 443:473–492

    CAS  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    CAS  Google Scholar 

  • Fdz-polanco F, Mendez E, Urueña MA, Villaverde S, Garcı́a PA (2000) Spatial distribution of heterotrophs and nitrifiers in a submerged biofilter for nitrification. Water Res 34:4081–4089

    CAS  Google Scholar 

  • Felske A, Wolterink A, van Lis R, de Vos WM, Akkermans ADL (1999) Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol Ecol 30:137–145

    CAS  Google Scholar 

  • Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395

    CAS  Google Scholar 

  • Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS, Knight R, Gilbert JA, McCulley RL (2013) Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342:621–624

    CAS  Google Scholar 

  • Gdoura R, Kchaou W, Chaari C, Znazen A, Hammami A (2007) Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis and Mycoplasma genitalium infections and semen quality of infertile men. BMC Infect Dis 7:129

    Google Scholar 

  • Glaeser SP, Kämpfer P (2014) The family Sphingomonadaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer, Heidelberg, pp 641–707

    Google Scholar 

  • Graves CJ, Makrides EJ, Schmidt VT, Giblin AE, Cardon ZG, Rand DM (2016) Functional responses of salt marsh microbial communities to long-term nutrient enrichment. Appl Environ Microbiol 82:2862–2871

    CAS  Google Scholar 

  • Horemans B, Vandermaesen J, Smolders E, Springael D (2012) Cooperative dissolved organic carbon assimilation by a linuron-degrading bacterial consortium. FEMS Microbiol Ecol 84:35–46

    Google Scholar 

  • Huang W, Lu Y, Li JH, Zheng Z, Zhang JB, Jiang X (2015) Effect of ionic strength on phosphorus sorption in different sediments from a eutrophic plateau lake. RSC Adv 5:79607–79615

    CAS  Google Scholar 

  • Huang W, Chen X, Wang K, Chen J, Zheng B, Jiang X (2019) Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network. MicrobiologyOpen 8:e644

    Google Scholar 

  • Janke D, Fritsche W (1985) Nature and significance of microbial cometabolism of xenobiotics. J Basic Microbiol 25:603–619

    CAS  Google Scholar 

  • Kara E, Hanson P, Hu Y, Winslow L, McMahon K (2013) A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota. ISME J 7:680–684

    Google Scholar 

  • Kim HS, Park J (2008) Effects of limestone on the dissolution of phosphate from sediments under anaerobic condition. Environ Technol 29:375–380

    CAS  Google Scholar 

  • Kim JM, Roh A, Choi S, Kim E, Choi M, Ahn B, Kim S, Lee Y, Joa J, Kang S, Lee SA, Ahn J, Song J, Weon H (2016) Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J Microbiol 54:838–845

    CAS  Google Scholar 

  • Kirchman DL, Hanson TE, Cottrell MT, Hamdan LJ (2014) Metagenomic analysis of organic matter degradation in methane-rich Arctic Ocean sediments. Limnol Oceanogr 59:548–559

    Google Scholar 

  • Koutsofios L (2002) Graphviz open source graph drawing tools. Lect Notes Comput Sci 2265:483–484

    Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    CAS  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    CAS  Google Scholar 

  • Lefort S, Gratton Y, Mucci A, Dadou I, Gilbert D (2012) Hypoxia in the Lower St. Lawrence Estuary: how physics controls spatial patterns. J Geophys Res 117:1–14

    Google Scholar 

  • Lin X, Green S, Tfaily MM, Prakash O, Konstantinidis KT, Corbett JE, Chanton JP, Cooper WT, Kostka JE (2012) Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Appl Environ Microbiol 78:7023–7031

    CAS  Google Scholar 

  • Liu Y (2017) Trend analysis and improvement countermeasures of water quality eutrophication in Dongping Lake of South-to-North Water Transfer Project. Inner Mongol Environment Sci 29:174–175

    Google Scholar 

  • Liu CM, Mclean PA, Sookdeo CC, Cannon FC (1991) Degradation of the herbicide glyphosate by members of the family rhizobiaceae. Appl Environ Microbiol 57:1799–1804

    CAS  Google Scholar 

  • Liu D, Ding W, Jia Z, Cai Z (2012) The impact of dissolved organic carbon on the spatial variability of methanogenic archaea communities in natural wetland ecosystems across China. Appl Microbiol Biotechnol 96:253–263

    CAS  Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386

    CAS  Google Scholar 

  • Lu S, Zhang X, Wang J, Liang P (2016) Impacts of different media on constructed wetlands for rural household sewage treatment. J Clean Prod 127:325–330

    Google Scholar 

  • Lugli GA, Milani C, Turroni F, Duranti S, Mancabelli L, Mangifesta M, Ferrario C, Modesto M, Mattarelli P, Jiří K, van Sinderen D, Ventura M (2017) Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genomics 18:568

    Google Scholar 

  • Lünsmann V, Kappelmeyer U, Benndorf R, Martinez-Lavanchy PM, Taubert A, Adrian L, Duarte M, Pieper DH, von Bergen M, Müller JA, Heipieper HJ, Jehmlich N (2016) In situ protein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model. Environ Microbiol 18:1176–1186

    Google Scholar 

  • Lynn TM, Ge T, Yuan H, Wei X, Wu X, Xiao K, Kumaresan D, Yu SS, Wu J, Whiteley AS (2017) Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microb Ecol 73:645–657

    CAS  Google Scholar 

  • Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes PC, Xu J, Gilbert JA (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 10:1891–1901

    CAS  Google Scholar 

  • Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–371

    CAS  Google Scholar 

  • Mahinthichaichan P, Morris D, Wang Y, Jensen GJ, Tajkhorshid E (2017) Bacterial carboxysome shell proteins are selectively permeable to carbon fixation substrates. Biophys J 112:239a

    Google Scholar 

  • Mamun AA, Salleh MN (2014) Challenges in non-point source pollution - sampling and testing. 5th Brunei International Conference on Engineering and Technology (BICET 2014)

  • Marsh GA, Fairbridge RW (1999) Lentic and lotic ecosystems. In: Environmental geology. Encyclopedia of earth science. Springer, Dordrecht

    Google Scholar 

  • Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK (2014) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8:1464–1475

    CAS  Google Scholar 

  • Orlygsson J, Kristjansson JK (2014) The family Hydrogenophilaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer, Heidelberg, Berlin, pp 859–868

    Google Scholar 

  • Pausch J, Zhu B, Kuzyakov Y, Cheng W (2013) Plant inter-species effects on rhizosphere priming of soil organic matter decomposition. Soil Biol Biochem 57:91–99

    CAS  Google Scholar 

  • Plugge CM, Zhang W, Scholten JCM, Stams AJM (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81

    CAS  Google Scholar 

  • Polónia AR, Cleary DF, Freitas R, Voogd NJ, Gomes N (2015) The putative functional ecology and distribution of archaeal communities in sponges, sediment and seawater in a coral reef environment. Mol Ecol 24:409–423

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    CAS  Google Scholar 

  • Rabouille C, Conley DJ, Dai MH, Cai WJ, Chen CTA, Lansard B, Green R, Yin K, Harrison PJ, Dagg M, McKee B (2008) Comparison of hypoxia among four riverdominated ocean margins: the Changjiang (Yangtze), Mississippi, Pearl, and Rhone rivers. Cont Shelf Res 28:1527–1537

    Google Scholar 

  • Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci USA 109:20292–20297

    CAS  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in arable soil. ISME J 4:1340–1351

    Google Scholar 

  • Ruiz-Rueda O, Hallin S, Baneras L (2009) Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol Ecol 67:308–319

    CAS  Google Scholar 

  • Segata N, Jacques I, Waldron L, Gevers D, Miropolsky L, Garrett WS, Curtis H (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

    Google Scholar 

  • Shang Q, Shan X, Cai C, Hao J, Li G, Yu G (2018) Correction: Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food Funct 7:3224–3232

    Google Scholar 

  • Shtarkman YM, Kocer ZA, Edgar R, Veerapaneni RSD, Elia T, Morris PF, Rogers SO (2013) Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya. PLoS One 8:e67221

    CAS  Google Scholar 

  • Song H, Li Z, Du B, Wang G, Ding Y (2012) Bacterial communities in sediments of the shallow Lake Dongping in China. J Appl Microbial 112:79–89

    CAS  Google Scholar 

  • Su Y, Wang W, Wu D, Huang W, Wang M, Zhu G (2018) Stimulating ammonia oxidizing bacteria (AOB) activity drives the ammonium oxidation rate in a constructed wetland (CW). Sci Total Environ 624:87–95

    CAS  Google Scholar 

  • Tabak HH, Scharp R, Burckle J, Kawahara FK, Govind R (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14:423–436

    CAS  Google Scholar 

  • Tatu KS, Anderson JT (2017) An introduction to wetland science and South Asian wetlands. In: Prusty BAK, Chandra R, Azeez PA (eds) Wetland science : perspectives from South Asia. Springer, New Delhi, pp 3–30

    Google Scholar 

  • Tian C, Lu X, Pei H, Hu W, Xie JS (2013) Seasonal dynamics of phytoplankton and its relationship with the environmental factors in Dongping Lake, China. Environ Monit Assess 185:2627

    Google Scholar 

  • Valentín-Vargas A, Root RA, Neilson JW, Chorover J, Maier RM (2014) Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment. Sci Total Environ 500-501:314–324

    Google Scholar 

  • Venceslau S, Stockdreher Y, Dahl C, Pereira IT (2014) The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism. BBA-Bioenergetics 1837:1148–1164

    CAS  Google Scholar 

  • Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NF, Zhou HW (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol 78:8264–8271

    CAS  Google Scholar 

  • Wang J, Chen J, Ding S, Guo J, Christopher D, Dai Z, Yang H (2016a) Effects of seasonal hypoxia on the release of phosphorus from sediments in deep-water ecosystem: a case study in Hongfeng Reservoir, Southwest China. Environ Pollut 219:858–865

    CAS  Google Scholar 

  • Wang K, Ye X, Zhang H, Chen H, Zhang D, Liu L (2016b) Regional variations in the diversity and predicted metabolic potential of benthic prokaryotes in coastal northern Zhejiang, East China Sea. Sci Rep-UK 6:38709

    CAS  Google Scholar 

  • Wei D, Wang XD (2017) Recent climatic changes and wetland expansion turned Tibet into a net CH4 source. Clim Chang 144:657–670

    Google Scholar 

  • Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham A, Hyde ER, Knight R (2017) Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27

    Google Scholar 

  • Worrall F, Howden NJK, Burt TP, Bartlett R (2019) The importance of sewage effluent discharge in the export of dissolved organic carbon from U.K. rivers. Hydrol Process 33:1851–1864

    CAS  Google Scholar 

  • Wu H, Wang X, He X, Zhang S, Liang R, Shen J (2017) Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. Sci Total Environ 598:697–703

    CAS  Google Scholar 

  • Wu H, Li Y, Zhang W, Wang C, Wang P, Niu L, Du D, Gao Y (2019) Bacterial community composition and function shift with the aggravation of water quality in a heavily polluted river. J Environ Manag 237:433–441

    CAS  Google Scholar 

  • Xu M, Liu GX, Hu ZY (2005) Progress of the study on the high-co-tolerant algae and its application in carbon fixation technology. J Grad School Chin Acad Sci 52:730–733

    Google Scholar 

  • Zhai X, Piwpuan N, Arias CA, Headley T, Brix H (2013) Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems? Ecol Eng 61:555–563

    Google Scholar 

  • Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol 69:395–406

    CAS  Google Scholar 

  • Zhang WJ, Peng PQ, Tong CL, Wang XL, Wu JS (2005) Characteristics of distribution and composition of organic carbon in Dongting Lake floodplain. Environ Sci 26:56–60

    CAS  Google Scholar 

  • Zhi W, Ji G (2012) Constructed wetlands, 1991-2011: a review of research development, current trends, and future directions. Sci Total Environ 441:19–27

    CAS  Google Scholar 

  • Zhu Z, Zhang J, Wu Y, Zhang Y, Lin J, Liu S (2011) Hypoxia off the Changjiang (Yangtze River) Estuary: oxygen depletion and organic matter decomposition. Mar Chem 125:108–116

    CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous referees, Dr. Tianchu Lyu at University of South Carolina, and Lifei Wang at Shandong University for their valuable comments and suggestions for the manuscript.

Funding

This study was supported by the China Major Science and Technology Program for Water Pollution Control and Treatment (No. 2017ZX07101003), Natural Science Foundation of Shaanxi Province (No. 2019JLP-26), Natural Science Foundation of Shandong Province, China (No. ZR2017MC013), and Research Program for Key Technologies of Sponge City Construction and Management in Guyuan City (No. SCHM-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Additional information

Responsible editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Yang, R., Cao, Q. et al. Differences of the microbial community structures and predicted metabolic potentials in the lake, river, and wetland sediments in Dongping Lake Basin. Environ Sci Pollut Res 27, 19661–19677 (2020). https://doi.org/10.1007/s11356-020-08446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08446-4

Keywords

Navigation