Skip to main content

Advertisement

Log in

Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mosquitoes spread several life-threatening diseases such as malaria, filaria, dengue, Japanese encephalitis, West Nile fever, chikungunya, and yellow fever and are associated with millions of deaths every year across the world. However, insecticides of synthetic origin are conventionally used for controlling various vector-borne diseases but they have various associated drawbacks like impact on non-targeted species, negative effects on the environment, and development of resistance in vector species by alteration of the target site. Plant extracts, phytochemicals, and their nanoformulations can serve as ovipositional attractants, insect growth regulators, larvicides, and repellents with least effects on the environment. Such plant-derived products exhibit broad-spectrum resistance against various mosquito species and are relatively cheaper, environmentally safer, biodegradable, easily accessible, and are non-toxic to non-targeted organisms. Therefore, in this review article, the current knowledge of phytochemical sources exhibiting larvicidal activity and their variations in response to solvents used for their extraction is underlined. Also, different methods such as physical, chemical, and biological for silver nanoparticle (AgNPs) synthesis, their mechanism of synthesis using plant extract, their potent larvicidal activity, and the possible mechanism by which these particles kill mosquito larvae are discussed. In addition, constraints related to commercialization of nanoherbal products at government and academic or research level and barriers from laboratory experiments to field trial have also been discussed. This comprehensive information can be gainfully employed for the development of herbal larvicidal formulations and nanopesticides against insecticide-resistant vector species in the near future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarthi C, Rajan GM, Rajaraman P, Alharbi NS, Kadaikunnan S, Khaled JM, Mothana RA, Siddiqui NA, Benelli G (2017) Eco-friendly and cost-effective Ag nanocrystals fabricated using the leaf extract of Habenaria plantaginea: toxicity on six mosquito vectors and four non-target species. Environ Sci Pollut Res:1–11

  • Adamo SA (2017) Stress responses sculpt the insect immune system, optimizing defense in an ever-changing world. Dev Comp Immunol 66:24–32

    CAS  Google Scholar 

  • Ahamed M, Khan M, Siddiqui M, AlSalhi MS, Alrokayan SA (2011) Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Physica E Low Dimens Syst Nanostruct 43:1266–1271

    CAS  Google Scholar 

  • Ahluwalia V, Elumalai S, Kumar V, Kumar S, Sangwan RS (2018) Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microb Pathog 114:402–408

    CAS  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    CAS  Google Scholar 

  • Aina DA, Owolo O, Lateef A, Aina FO, Hakeem AS, Adeoye-Isijola M, Okon V, Asafa TB, Elegbede JA, Olukanni OD, Adediji I (2019) Biomedical applications of Chasmanthera dependens stem extract mediated silver nanoparticles as antimicrobial, antioxidant, anticoagulant, thrombolytic, and larvicidal agents. Karbala Int J Mod Sci 5:2

    Google Scholar 

  • Akhil Rautela, Jyoti Rani, Mira Debnath (Das) (2019) Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol 10(1)

  • Alharbi NS, Govindarajan M, Kadaikunnan S, Khaled JM, Almanaa TN, Alyahya SA, Al-Anbr MN, Gopinath K, Sudha A (2018) Nanosilver crystals capped with Bauhinia acuminata phytochemicals as new antimicrobials and mosquito larvicides. J Trace Elem Med Biol 50:146–153

    CAS  Google Scholar 

  • Ali SI, Gopalakrishnan B, Venkatesalu V (2018) Evaluation of larvicidal activity of Senecio laetus Edgew. against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus. S Afr J 114:117–125

    CAS  Google Scholar 

  • Ali SI, Gopalakrishnan B, Venkatesalu V (2019) Larvicidal potential of Juglans regia male flower against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Nat Prod Res 33:1463–1466

    CAS  Google Scholar 

  • Al-Mekhlafi FA (2018) Larvicidal, ovicidal activities and histopathological alterations induced by Carum copticum (Apiaceae) extract against Culex pipiens (Diptera: Culicidae). Saudi J Biol Sci 25:52–56

    Google Scholar 

  • Al-Naami MTAA, Mahmood EA, Mohammad HEA (2017) The effect of silver nanoparticles on second larval instar of Trogoderma granarium everts (Insecta: Coleoptera: Dermestidae). Int J Sci Nat 8:303–306

    CAS  Google Scholar 

  • AlQahtani FS, AlShebly MM, Govindarajan M, Senthilmurugan S, Vijayan P, Benelli G (2017) Green and facile biosynthesis of silver nanocomposites using the aqueous extract of Rubus ellipticus leaf: toxicity and oviposition deterrent activity against Zika virus, malaria and filariasis mosquito vectors. J Asia Pac Entomol 20:157–164

    Google Scholar 

  • Al-Quraishy S, Abdel-Ghaffar F, Al-Rasheid KA, Mehlhorn J, Mehlhorn H (2012) Observations on effects of a neem seed extract (MiteStop®) on biting lice (mallophages) and bloodsucking insects parasitizing horses. Parasitol Res 110: 335–9

  • Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M (2018) Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf B Biointerf 171:398–405

    CAS  Google Scholar 

  • Alshehri MA, Alanazi NA, Panneerselvam C, Trivedi S, Maggi F, Sut S, Dall'Acqua S (2020) Phytochemical analysis of Rhazya stricta extract and its use in fabrication of silver nanoparticles effective against mosquito vectors and microbial pathogens. Sci Total Environ 700: 134443

  • Amutha V, Deepak P, Kamaraj C, Balasubramani G, Aiswarya D, Arul D, Santhanam P, Ballamurugan AM, Perumal P (2019) Mosquito-Larvicidal potential of metal and oxide nanoparticles synthesized from aqueous extract of the seagrass, Cymodocea serrulata. J Clust Sci 30:797–812

    CAS  Google Scholar 

  • Anandan M, Poorani G, Boomi P, Varunkumar K, Anand K, Chuturgoon AA, Saravanan M, Prabu HG (2019) Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochem 80:80–88

    CAS  Google Scholar 

  • Annie SW, Raveen R, Paulraj MG, Samuel T, Arivoli S (2015) Screening of Eichhornia crassipes (Mart.) Solms (Pontederiaceae) crude leaf extracts for larvicidal efficacy against the filarial vector Culex quinquefasciatus say (Diptera: Culicidae). Int J Mosq Res 2:43–48

    Google Scholar 

  • Ansari MA, Mittal PK, Razdan RK, Sreehari U (2005) Larvicidal and mosquito repellent activities of pine (Pinus longifolia, family: Pinaceae) oil. 42(3):95

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne Zoonotic Dis 12:262–268

    Google Scholar 

  • Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8:e53186

    CAS  Google Scholar 

  • Arya G, Kumari RM, Gupta N, Kumar A, Chandra R, Nimesh S (2018) Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: reaction optimization, antimicrobial and catalytic activities. Artif Cells Nanomed Biotechnol 46: 985–993

  • Asogwa EU, Ndubuaku TCN, Ugwu JA, Awe OO (2010) Prospects of botanical pesticides from neem, Azadirachta indica for routine protection of cocoa farms against the brown cocoa mirid Sahlbergella singularis in Nigeria. J Med Plant Res 4:001–006

    Google Scholar 

  • Ávalos A, Haza AI, Drosopoulou E, Mavragani-Tsipidou P, Morales P (2015) In vivo genotoxicity assesment of silver nanoparticles of different sizes by the somatic mutation and recombination test (SMART) on Drosophila. Food Chem. Toxicol 85:114–119

    Google Scholar 

  • Azarudeen RMST, Govindarajan M, AlShebly MM, AlQahtani FS, Amsath A, Senthilmurugan S, Vijayan P, Benelli G (2017) Size-controlled biofabrication of silver nanoparticles using the Merremia emarginata leaf extract: toxicity on Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) and non-target mosquito predators. J Asia Pac Entomol 20:359–366

    Google Scholar 

  • Bagavan A, Rahuman AA, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 103:223–229

    CAS  Google Scholar 

  • Banala RR, Nagati VB, Karnati PR (2015) Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J Biol Sci 22:637–644

    CAS  Google Scholar 

  • Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A: Physicochem. Eng Asp 368:58–63

    CAS  Google Scholar 

  • Bansal SK, Singh VK, Sharma S, Sherwani MR (2011) Comparative larvicidal potential of different plant parts of Withania somnifera against vector mosquitoes in the semi-arid region of Rajasthan. J Environ Boil 32:71–75

    CAS  Google Scholar 

  • Banumathi B, Vaseeharan B, Chinnasamy T, Vijayakumar S, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Euphorbia rothiana-fabricated Ag nanoparticles showed high toxicity on Aedes aegypti larvae and growth inhibition on microbial pathogens: a focus on morphological changes in mosquitoes and antibiofilm potential against Bacteria. J Clust Sci 28:2857–2872

    CAS  Google Scholar 

  • Barik M, Rawani A, Laskar S, Chandra G (2018) Evaluation of mosquito larvicidal activity of fruit extracts of against the Japanese encephalitis vector. Nat Prod Res 33(11):1682–1686

    Google Scholar 

  • Barik M, Rawani A, Laskar S, Chandra G (2019) Evaluation of mosquito larvicidal activity of fruit extracts of Acacia auriculiformis against the Japanese encephalitis vector Culex vishnui. Nat Prod Res 33:1682–1686

    CAS  Google Scholar 

  • Barnawi AAB, Sharawi SE, Mahyoub JA, Al-Ghamdi KM (2019) Larvicidal studies of Avicennia marina extracts against the dengue fever mosquito Aedes aegypti (Culicidae: Diptera). Int J Mosq Res 6:55–60

    Google Scholar 

  • Beg M, Maji A, Mandal AK, Das S, Aktara MN, Jha PK, Hossain M (2017) Green synthesis of silver nanoparticles using Pongamia pinnata seed: characterization, antibacterial property, and spectroscopic investigation of interaction with human serum albumin. J Mol Recognit 30:2565

    Google Scholar 

  • Behravan M, Panahi AH, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A (2019) Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity, Int J Biol Macromol. 124:148–154

  • Benelli G (2015a) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212

    Google Scholar 

  • Benelli G (2015b) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805

    Google Scholar 

  • Benelli G (2016a) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68

    CAS  Google Scholar 

  • Benelli G (2016b) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34

    Google Scholar 

  • Benelli G (2018) Gold nanoparticles—against parasites and insect vectors. Acta Trop 178:73–80

    CAS  Google Scholar 

  • Benelli G, Beier JC (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96

    Google Scholar 

  • Benelli G, Maggi F, Romano D, Stefanini C, Vaseeharan B, Kumar S, Higuchi A, Alarfaj AA, Mehlhorn H, Canale A (2017a) Nanoparticles as effective acaricides against ticks-a review. Ticks Tick-borne Dis 8:821–826

    Google Scholar 

  • Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017b) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28:3–10

    CAS  Google Scholar 

  • Benelli G, Kadaikunnan S, Alharbi NS, Govindarajan M (2018a) Biophysical characterization of Acacia caesia-fabricated silver nanoparticles: effectiveness on mosquito vectors of public health relevance and impact on non-target aquatic biocontrol agents. Environ Sci Pollut Res 25:10228–10242

    CAS  Google Scholar 

  • Benelli G, Rajeswary M, Vijayan P, Senthilmurugan S, Alharbi NS, Kadaikunnan S, Khaled JM, Govindarajan M (2018b) Boswellia ovalifoliolata (Burseraceae) essential oil as an eco-friendly larvicide? Toxicity against six mosquito vectors of public health importance, non-target mosquito fishes, backswimmers, and water bugs. Environ Sci Pollut. Res 25:1–8

    Google Scholar 

  • Bhagat M, Anand R, Datt R, Gupta V, Arya S (2019) Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J Inorg Organomet Polym Mate 29:1039–1047

    CAS  Google Scholar 

  • Bockarie MJ, Gbakima AA, Barnish G (1999) It all began with Ronald Ross: 100 years of malaria research and control in Sierra Leone Ann. Trop Med Parasitol 193:213–224

    Google Scholar 

  • Borah R, Kalita MC, Kar A, Talukdar AK (2010) Larvicidal efficacy of Toddalia asiatica (Linn.) Lam against two mosquito vectors Aedes aegypti and Culex quinquefasciatus. Afr J Biotechnol 9:2527–2530

    Google Scholar 

  • Borase PH, Patil D, Salunkhe RB, Narkhede CP, Salunke BK, Patil SV (2013) Phytosynthesized silver nanoparticles: a potent mosquito Biolarvicidal agent. J Nanomed Bio Discov 3:111

    Google Scholar 

  • Borase HP, Patil CD, Salunkhe RB, Narkhede CP, Suryawanshi RK, Salunke BK, Patil SV (2014) Mosquito larvicidal and silver nanoparticles synthesis potential of plant latex. J Entomol Acarol Res 46:59–65

    Google Scholar 

  • Buteler M, Sofie SW, Weaver DK, Driscoll D, Muretta J, Stadler T (2015) Development of nanoalumina dust as insecticide against Sitophilus oryzae and Rhyzopertha dominica. Int J Pest Manag 61:80–89

    CAS  Google Scholar 

  • Callaway E, Cyranoski D (2015) Anti-parasite drugs sweep Nobel prize in medicine. Nature 526:174–175

    CAS  Google Scholar 

  • Campbell FL, Sullivan WW, Smith LN (1993) The relative toxicity of Nicotine, anabasine, methyl anabasine and lupine for Culicine mosquito larvae. J Econ Entomol 26:500–509

    Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    CAS  Google Scholar 

  • Chandrasekaran T, Thyagarajan A, Santhakumari PG, Pillai AKB, Krishnan UM (2019) Larvicidal activity of essential oil from Vitex negundo and Vitex trifolia on dengue vector mosquito Aedes aegypti. Rev Soc Bras Med Trop 52

  • Chandrashekhar DP, Satish VP, Chandra KS, Rahul BS (2011) Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and non target fish Poecilia reticulata. Parasitol Res 108:1253–1263

    Google Scholar 

  • Chansang U, Zahiri NS, Bansiddhi J, Boonruad T, Thongsrirak P, Mingmuang J, Benjapong N, Mulla MS (2005) Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum Vahl) from Thailand. J Vector Ecol 30:195

    Google Scholar 

  • Chung SW, Ginger DS, Morales MW, Zhang Z, Chandrasekhar V, Ratner MA, Mirkin CA (2005) Top - down meets bottom - up: dip - pen nanolithography and DNA - directed assembly of nanoscale electrical circuits. Small 1:64–69

    CAS  Google Scholar 

  • Chung SK, Seo JY, Lim JH, Park HH, Yea MJ, Park HJ (2013) Microencapsulation of essential oil for insect repellent in food packaging system. J Food Sci 78:E709–E714

    CAS  Google Scholar 

  • Chung M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11:40–54

    Google Scholar 

  • Couzin-Frankel J (2010) Infectious diseases. Fears of lax surveillance if CDC program cut. Science 328:1088

    CAS  Google Scholar 

  • Covell G (1943) Anti-mosquito measures with special reference to India. Health Bull 11

  • Da Rocha Voris DG, dos Santos DL, Lima JA, Lima KDSC, Lima JBP, dos Santos Lima AL (2018) Evaluation of larvicidal, adulticidal, and anticholinesterase activities of essential oils of Illicium verum Hook. F, Pimenta dioica (L.) Merr, and Myristica fragrans Houtt. against Zika virus vectors. Environ Sci Pollut Res 25:22541–22551

    Google Scholar 

  • Daffalla HM, Ali KSE, Tajelser T, Hagr TE, Ahmed NS, Ahmed RH (2018) Larvicidal and antibacterial activities of methanol extract of Acacia polyacanthaWilld. Journal of Advanced Research in Pharmaceutical Sciences and Pharmacology Interventions 2:7–11

    Google Scholar 

  • Das NG, Goswami D, Rabha B (2007) Preliminary evaluation of mosquito larvicidal efficacy of plant extracts. J Vect Borne Dis 44:145–148

    CAS  Google Scholar 

  • Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2:18

    Google Scholar 

  • Deepak P, Sowmiya R, Ramkumar R, Balasubramani G, Aiswarya D, Perumal P (2017) Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed, Turbinaria ornata (Turner) J. Agardh 1848. Artif Cell Nanomed Biotechnol 45:990–998

    CAS  Google Scholar 

  • Dehghanizade S, Arasteh J, Mirzaie A (2018) Green synthesis of silver nanoparticles using Anthemis atropatana extract: characterization and in vitro biological activities. Artif Cells Nanomed Biotechnol 46:160–168

    CAS  Google Scholar 

  • Devanesan S, AlSalhi MS, Vishnubalaji R, Alfuraydi AA, Alajez NM, Alfayez M, Murugan K, Sayed SR, Nicoletti M, Benelli G (2017) Rapid biological synthesis of silver nanoparticles using plant seed extracts andtheir cytotoxicity on colorectal cancer cell lines. J Clust Sci 28:595–605

    CAS  Google Scholar 

  • Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B (2016) Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C 58:36–43

    CAS  Google Scholar 

  • Dharmagadda VSS, Naik SN, Mittal PK, Vasudevan P (2005) Larvicidal activity of Tagetes patula essential oil against three mosquito species. Bioresour Technol 96:1235–1240

    CAS  Google Scholar 

  • Dhuper S, Panda D, Nayak PL (2012) Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica. Nano Trends: J Nanotech App 13:16–22

    Google Scholar 

  • Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792

    CAS  Google Scholar 

  • Dubey M, Bhadauria S, Kushwah B (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Dig J Nanomater Biostruct 4:537–543

    Google Scholar 

  • Dudhane AA, Waghmode SR, Dama LB, Mhaindarkar VP, Sonawane A, Katariya S (2019) Synthesis and characterization of gold nanoparticles using plant extract of Terminalia arjuna with antibacterial activity. Int J Nanosci Nanotechnol 15:75–82

    Google Scholar 

  • Edwards FL, Tchounwou PB (2005) Environmental toxicology and health effects associated with methyl parathion exposure – a scientific review. Int J Environ Res Public Health 2:430–441

    CAS  Google Scholar 

  • El Akhal F, Guemmouh R, Maniar S, Taghzouti K, El Ouali LA (2016) Larvicidal activity of essential oils of Thymus vulgaris and Origanum majorana (Lamiaceae) against of the malaria vector Anopheles labranchiae (Diptera: Culicidae). Int J Pharm Pharm Sci 8:372–376

    Google Scholar 

  • Elango G, Rahuman AA, Bagavan A, Kamaraj C, Zahir AA, Venkatesan C (2009) Laboratory study on larvicidal activity of indigenous plant extracts against Anopheles subpictus and Culex tritaeniorhynchus. Parasitol Res 104:1381–1388

    CAS  Google Scholar 

  • Elavazhagan T, Arunachalam KD (2011) Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomedicine 6:1265–1278

    CAS  Google Scholar 

  • Elemike EE, Onwudiwe DC, Ekennia AC, Ehiri RC, Nnaji NJ (2017) Phytosynthesis of silver nanoparticles using aqueous leaf extracts of Lippia citriodora: antimicrobial, larvicidal and photocatalytic evaluations. Mater Sci Eng C Mater Biol Appl 75:980–989

    CAS  Google Scholar 

  • Elumalai D, Kaleena PK, Ashok K, Suresh A, Hemavathi M (2016) Green synthesis of silver nanoparticles using Achyranthes aspera and its larvicidal activity against three major mosquito vectors. Engin Agric Environ Food 9:1–8

    Google Scholar 

  • Elumalai D, Hemavathi M, Deepaa CV, Kaleena PK (2017) Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiol Control 2:15–26

    Google Scholar 

  • Erick ON, Padmanabhan NM, Josephat JM, Opio DP (2017) Effect of biopolymer stabilized silver nanoparticles on antioxidant genes from larvae of Anopheles Stephensi mosquito. Front Nanosci Nanotech 3:1–4

    Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–666

    CAS  Google Scholar 

  • Ferreira M, Cantrell C, Duke S, Ali A, Rosa L (2017) New pesticidal diterpenoids from Vellozia gigantea (Velloziaceae), an endemic Neotropical plant living in the endangered Brazilian biome rupestrian grasslands. Molecules 22:175

    Google Scholar 

  • Firdhouse MJ, Lalitha P (2012) Green synthesis of silver nanoparticles using the aqueous extract of Portulaca oleracea (L). Asian J Pharm Clin Res 6:92–94

    Google Scholar 

  • Foldbjerg R, Jiang X, Miclăus T, Chunying C, Autrup H, Beer C (2015) Silver nanoparticles-wolves in sheep’s clothing? Toxicol Res 4:563–575

    CAS  Google Scholar 

  • Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46:558–567

    CAS  Google Scholar 

  • Francis S, Joseph S, Koshy EP, Mathew B (2017) Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ Sci Pollut Res 24:17347–17357

    CAS  Google Scholar 

  • Francis S, Joseph S, Koshy EP, Mathew B (2018) Microwave assisted green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications. Artif Cells Nanomed Biotechnol 46:795–804

    CAS  Google Scholar 

  • Francois G, Looveren MV, Timperman G, Chimanuka B, Assi LA, Holenz J, Bringmann G (1996) Larvicidal activity of the napthylisoquinoline alkaloid dioncophylline a against the malaria vector Anopheles stephensi. J Ethanopharmacol 54:125–130

    CAS  Google Scholar 

  • Fruijtier-Pölloth C (2012) The toxicological mode of action and the safetyof synthetic amorphous silica—a nanostructured material. Toxicology 294:61–79

    Google Scholar 

  • Ga’al H, Fouad H, Mao G, Tian J, Jianchu M (2018) Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis. Artif Cell Nanomed Biotechnol 46:1171–1179

    Google Scholar 

  • Geetha N, Geetha TS, Manonmani P, Thiyagarajan M (2014) Green synthesis of silver nanoparticles using Cymbopogon Citratus (DC) Stapf. extract and its antibacterial activity. Aus J Basic Appl Sci 8:324–331

    CAS  Google Scholar 

  • Geethalakshmi R, Sarada DVL (2010) Synthesis of plant-mediated silver nanoparticles using Trianthema decandra extract and evaluation of their anti-microbial activities. Int J Eng Sci Technol 2:970–975

    Google Scholar 

  • Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mosquito larvicides. Indian J Med Res 135:581

    CAS  Google Scholar 

  • Ghosh S, Tiwari SS, Kumar B, Srivastava S, Sharma AK, Kumar S, Bandyopadhyay A, Julliet S, Kumar R, Rawat AKS (2015) Identification of potential plant extracts for anti-tick activity against acaricide resistant cattle ticks, Rhipicephalus (Boophilus) Microplus (Acari: Ixodidae). Exp Appl Acarol 66:159–171

    Google Scholar 

  • Ghosh S, Molla SH, Saha M, Ghosh S, Bandyopadhyay PK (2016) Studies on the control of filarial vector, Culex quinquefasciatus by using locally available plant extracts. IOSR J Agric Vet Sci 9:36–39

    Google Scholar 

  • Ghramh HA, Al-Ghamdi KM, Mahyoub JA, Ibrahim EH (2018) Chrysanthemum extract and extract prepared silver nanoparticles as biocides to control Aedes aegypti (L.), the vector of dengue fever. J Asia Pac Entomol 21:205–210

    Google Scholar 

  • Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S, Dhineshkumar M, Kumaraguru AK (2011) Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med 1:799–803

    Google Scholar 

  • Gnanajobitha G, Paulkumar K, Vanaja M, Rajeshkumar S, Malarkodi C, Annadurai G, Kannan C (2013) Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J Nanostru Chem 3:67

    Google Scholar 

  • Gogoi SJ (2013) Green synthesis of silver nanoparticles from leaf extract of ethnomedicinal plants Pogostemon benghalensis (B) O. Ktz. Adv Appl Sci Res 4:274–278

    CAS  Google Scholar 

  • Gondwal M, Pant GJN (2013) Biological evaluation and green synthesis of silver nanoparticles using aqueous extract of Calotropis procera. Int J Pharm Biol Sci 4:635–643

    CAS  Google Scholar 

  • Goodarzi S, Tavakoli S, Abai MR, Amini Z, Vatandoost H, Yassa N, Hadjiakhoondi A, Tofighi Z (2019) Strong insecticidal potential of methanol extract of Ferula gotrifida fruits against Anopheles stephensi as malaria vector. Environ Sci Pollut Res 26:7711–7717

    CAS  Google Scholar 

  • Gopinath V, MubarakAli D, Priyadarshini S, Priyadharsshini NM, Thajuddin N, Velusamy P (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf B Biointerfaces 96:69–74

    CAS  Google Scholar 

  • Govindarajan M, Benelli G (2017) A facile one-pot synthesis of eco-friendly nanoparticles using Carissa carandas: ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. J Clust Sci 28:15–36

    CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Benelli G (2016) Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: an eco-friendly and novel larvicides against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicol Environ Saf 129:85–90

    CAS  Google Scholar 

  • Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G (2017) Single-step biological fabrication of colloidal silver nanoparticles using Hugonia mystax: larvicidal potential against Zika virus, dengue, and malaria vector mosquitoes. Artif Cell Nanomed B 45:1317–1325

    CAS  Google Scholar 

  • Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopest 3:394–399

    CAS  Google Scholar 

  • Govindarajulu B, Srimathi A, Bhuvana R, Karthikeyan J (2015) Mosquito larvicidal efficacy of the leaf extracts of Annona reticulata against Aedes aegypti. Int J Curr Microbiol App Sci 4:132–140

    CAS  Google Scholar 

  • Govindarajan M (2009) Bioefficacy of Cassia fistula Linn. (Leguminosae) leaf extract against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 13:99–103

    CAS  Google Scholar 

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109(2):353–367

    CAS  Google Scholar 

  • Granados-Echegoyen CA, Chan-Bacab MJ, Ortega-Morales BO, Vásquez-López A, Lagunez-Rivera L, Diego-Nava F, Gaylarde C (2018) Argemone mexicana (Papaverales: Papavaraceae) as an alternative for mosquito control: first report of Larvicidal activity of flower extract. J Med Entomol 56:261–267

    Google Scholar 

  • Gretscher RR, Streicher PE, Strauß AS, Wielsch N, Stock M, Wang D, Boland W, Burse A (2016) A common theme in extracellular fluids of beetles: extracellular superoxide dismutases crucial for balancing ROS in response to microbial challenge. Sci Rep 6:24082

    CAS  Google Scholar 

  • Grzywacz D, Stevenson PC, Mushobozi WL, Belmain S, Wilson K (2014) The use of indigenous ecological re-sources for pest control in Africa. Food Security 6:71–86

    Google Scholar 

  • Gunasekaran K, Vijayakumar T, Kalyanasundaram M (2009a) Larval susceptibility of Aloe barbadensis and Cannabis sativa against Culex quinquefasciatus, the filariasis vector. J Environ Biol 29:941–943

    Google Scholar 

  • Gunasekaran K, Vijayakumar T, Kalyanasundaram M (2009b) Larvicidal and emergence inhibitory activities of NeemAzal T/S 1.2 per cent EC against vectors of malaria, filariasis and dengue. Indian J Med Res 130:138

    CAS  Google Scholar 

  • Halder KM, Halder B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva Drypetes roxburghii (Wall). Parasitol Res 112:1451–1459

    Google Scholar 

  • Hamelian M, Zangeneh MM, Amisama A, Varmira K, Veisi H (2018) Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Appl Organomet Chem 32:44–58

    Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    CAS  Google Scholar 

  • Hossain E, Rawani A, Chandra G, Mandal SC, Gupta JK (2011) Larvicidal activity of Dregea volubilis and Bombax malabaricumleaf extracts against the filarial vector Culex quinquefasciatus. Asian Pac J Trop Medi 4:436–441

    CAS  Google Scholar 

  • Huang HT, Lin CC, Kuo TC, Chen SJ, Huang RN (2019) Phytochemical composition and larvicidal activity of essential oils from herbal plants. Planta:1–10

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638

    CAS  Google Scholar 

  • Iravani S (2019) Bio-based synthesis of magnetic nanoparticles and their applications. Magnetic Nanostructures:13–31

  • Ishwarya R, Vaseeharan B, Anuradha R, Rekha R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. J Photochem Photobiol B Biol 174:133–143

    CAS  Google Scholar 

  • Islam J, Zaman K, Duarah S, Raju PS, Chattopadhyay P (2017) Mosquito repellents: an insight into the chronological perspectives and novel discoveries. Acta Trop 167:216–230

    CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:46–66

    Google Scholar 

  • Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71:1587–1590

    CAS  Google Scholar 

  • Jain D, Daima HK, Kachhwaha S, Kothari S (2009) Synthesis of plant- mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 4:557–563

    Google Scholar 

  • Jang YS, Jeon JH, Lee HS (2005) Mosquito larvicidal activity of active constituent derived from Chamaecyparis obtusa leaves against 3 mosquito species. J Eur Mosq Control Assoc 21:400–404

    CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasit Res 109:185–194

    Google Scholar 

  • Jeyasankar A, Chinnamani T (2018) Larvicidal and pupicidal activities of Solonum pseudocapsicum fruits compunds against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Eur J Clin Microbiol Infect Dis 2:11–16

    Google Scholar 

  • Jiang S, Teng CP, Puah WC, Wasser M, Win KY, Han MY (2015) Oral administration and selective uptake of polymeric nanoparticles in Drosophila larvae as an in vivo model. ACS Biomater Sci Eng 1:1077–1084

    CAS  Google Scholar 

  • Jinu U, Rajakumaran S, Senthil-Nathan S, Geetha N, Venkatachalam P (2017) Potential larvicidal activity of silver nanohybrids synthesized using leaf extracts of Cleistanthus collinus (Roxb.) Benth. ex Hook. f. and Strychnos nux-vomica L. nux-vomica against dengue, Chikungunya and Zika vectors. Physiol Mol Plant Pathol 101:163–171

    Google Scholar 

  • Jiraungkoorskul W (2019) Efficiency of Tinospora crispa against Culex quinquefasciatus larvae. Environ Sci Pollut Res 26:14712 ̶–1414716

    Google Scholar 

  • Jokanovic M, Prostran M (2009) Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Curr Med Chem 16:2177–2188

    CAS  Google Scholar 

  • Kalaiselvi D, Mohankumar A, Shanmugam G, Nivitha S, Sundararaj P (2019) Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode, Meloidogyne incognita. Crop Prot 117:108–114

    CAS  Google Scholar 

  • Kalaivani K, Senthil NS, Murugesan AG (2011) Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 110:1261–1268

    Google Scholar 

  • Kalimuthu K, Panneerselvam C, Murugan K, Hwang JS (2013) Green synthesis of silver nanoparticles using Cadaba indica lam leaf extract and its larvicidal and pupicidal activity against Anopheles stephensi and Culex quinquefasciatus. J Entomol Acarol Res 45:e11–e11

    Google Scholar 

  • Kalimuthu K, Panneerselvam C, Chou C, Lin SM, Tseng LC, Tsai KH, Murugan K, Hwang JS (2017a) Predatory efficiency of the copepod Megacyclops formosanus and toxic effect of the red alga Gracilaria firma-synthesized silver nanoparticles against the dengue vector Aedes aegypti. Hydrobiologia 785:359–372

    CAS  Google Scholar 

  • Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, Alarfaj AA, Higuchi A, Canale A, Hwang JS, Benelli G (2017b) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changesin targeted mosquitoes. Process Saf Environ Prot 109:82–96

    CAS  Google Scholar 

  • Kamalakannan S, Murugan K, Barnard DR (2011) Toxicity of Acalypha indica (Euphorbiaceae) and Achyranthes aspera (Amaranthaceae) leaf extracts to Aedes aegypti (Diptera: Culicidae). J Asia Pac Entomol 14:41–45

    Google Scholar 

  • Kamaraj C, Bagavan A, Elango G, Zahir AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Rahuman AA (2011) Larvicidal activity of medicinal plant extracts against Anopheles subpictus and Culex tritaeniorhynchus. Indian J Med Res 134:101

    CAS  Google Scholar 

  • Kannathasan K, Senthilkumar A, Chandrasekaran M, Venkatesalu V (2007) Differential larvicidal efficacy of four species of Vitex against Culex quinquefasciatus larvae. Parasitol Res 101(6):1721–1723

    Google Scholar 

  • Karmegam N, Sakthivadivel M, Anuradha V, Daniel T (1997) Indigenous plants extracts as larvicidal agents against Culex quinquefasciatus Say. Bioresour Technol 59:137–140

    CAS  Google Scholar 

  • Kathiravan V, Ravi S, Kumar SA (2014) Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochim Acta Part A: Mol Biomol Spectrosc 130:116–121

    CAS  Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochem Acta A Mol Biomol Spectrosc 79:594–598

    CAS  Google Scholar 

  • Keiser J, Maltese MF, Erlanger TE, Bos R, Tanner M, Singer BH, Utzinger J (2005) Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop 95:40–57

    Google Scholar 

  • Kesharwani J, Yoon KY, Hwang J, Rai M (2009) Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis. J Bionanosci 3:39–44

    CAS  Google Scholar 

  • Khader SZA, Syed Zameer Ahmed S, Sathyan J, Mahboob MRP, Venkatesh K, Ramesh K (2018) A comparative study on larvicidal potential of selected medicinal plants over green synthesized silver nano particles. Egypt J Basic Appl Sci 5:54–62

    Google Scholar 

  • Kiran SR, Bhavani K, Devi PS, Rao BR, Reddy KJ (2006) Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietienia DC. against Aedes aegypti and Anopheles stephensi. Bioresour Technol 97:2481–2484

    CAS  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306

    CAS  Google Scholar 

  • Kovendan K, Murugan K, Kumar AN, Vincent S, Hwang JS (2012a) Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:669–678

    Google Scholar 

  • Kovendan K, Murugan K, Vincent S (2012b) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 2:571–581

    Google Scholar 

  • Krishnaraj C, Jagan E, Rajasekar S, Selvakumar P, Kalaichelvan P, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76:50–56

    CAS  Google Scholar 

  • Kumar S, Wahab N, Warikoo R (2011) Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pac J Trop Biomed 1:85–88

    Google Scholar 

  • Kumar S, Warikoo R, Mishra M, Seth A, Wahab N (2012) Larvicidal efficacy of the Citrus limetta peel extracts against Indian strains of Anopheles stephensi Liston and Aedes aegypti L. Parasitol Res 111:173 ̶–17178

    Google Scholar 

  • Kumar S, Daimary RM, Swargiary M (2013a) Biosynthesis of silver nanoparticles using Premna herbacea leaf extract and evaluation of its antimicrobial activity against bacteria causing dysentery. Int J Pharm Biol Sci 4:378–384

    CAS  Google Scholar 

  • Kumar SA, Jayaraman M, Venkatesalu V (2013b) Chemical constituents and larvicidal potential of Feronia limonia leaf essential oil against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Parasitol Res 112:1337–1342

    Google Scholar 

  • Kumar SMS, Srinivasan R, Natarajan D (2013c) Larvicidal potential of some Indian medicinal plant extracts against Aedes aegypti (L). Asian J Pharm Clin Res 6:77–80

    Google Scholar 

  • Kumar PV, Pammi SV, Kollu P, Satyanarayana KV, Shameem U (2014a) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crop Prod 52:562–566

    Google Scholar 

  • Kumar DA, Palanichamy V, Roopan SM (2014b) Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim Acta Part A: Mol Biomol Spectrosc 127:168–171

    CAS  Google Scholar 

  • Kumar PM, Murugan K, Madhiyazhagan P, Kovendan K, Amerasan D, Chandramohan B, Dinesh D, Suresh U, Nicoletti M, Alsalhi MS, Devanesan S (2016) Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol Res 115:751–759

    Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A (2017a) Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J Biol Sci 24:45–50

    CAS  Google Scholar 

  • Kumar VA, Ammani K, Jobina R, Subhaswaraj P, Siddhardha B (2017b) Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. J Photochem Photobiol B Biol 171:1–8

    CAS  Google Scholar 

  • Kumar D, Kumar G, Agrawal V (2018a) Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall. bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol Res 117:377–389

    Google Scholar 

  • Kumar D, Kumar G, Das R, Agrawal V (2018b) Strong larvicidal potential of silver nanoparticles (AgNPs) synthesized using Holarrhena antidysenterica (L.) Wall. bark extract against malarial vector, Anopheles stephensi Liston. Process Saf Environ Prot 116:137–148

    CAS  Google Scholar 

  • Kumar PV, Kalyani RL, Veerla SC, Kollu P, Shameem U, Pammi SVN (2019) Biogenic synthesis of stable silver nanoparticles via Asparagus racemosus root extract and their antibacterial efficacy towards human and fish bacterial pathogens. Mater Res Express 6:104008

    Google Scholar 

  • Kumarasamyraja D, Jeganathan NS (2013) Green synthesis of silver nanoparticles using aqueous extract of Acalypha indica and its antimicrobial activity. Int J Pharm Biol Sci 4:469–476

    CAS  Google Scholar 

  • Kuppusamy P, Yousoff MM, Manian GP, Govindan N (2014) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharm J 24:473–484

    Google Scholar 

  • Lakshmanan G, Sathiyaseelan A, Kalaichelvan PT, Murugesan K (2018) Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: assessment of their antibacterial and anticancer activity. Karbala Int J Mod Sci 4:61–68

    Google Scholar 

  • Lallawmawma H, Sathishkumar G, Sarathbabu S, Ghatak S, Sivaramakrishnan S, Gurusubramanian G, Kumar NS (2015) Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ Sci Pollut Res 22:17753–17768

    CAS  Google Scholar 

  • Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ojo SA, Gueguim-Kana EB, Beukes LS (2016) Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J Nanostruct Chem 6:159–169

    CAS  Google Scholar 

  • Logeswari P, Silambarasan S, Abraham J (2012) Synthesis of silver nanoparticles using plant extract and analysis of their antimicrobial property. J Saudi Chem Soc 19:311–317

    Google Scholar 

  • Logeswari P, Silambarasan S, Abraham J (2013) Eco-friendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Sci Iran 20:1049–1054

    Google Scholar 

  • López-Miranda JL, Vázquez M, Fletes N, Esparza R, Rosas G (2016) Biosynthesis of silver nanoparticles using a Tamarix gallica leaf extract and their antibacterial activity. Mater Lett 176:285–289

    Google Scholar 

  • Ma W, Jing L, Valladares A, Mehta SL, Wang Z, Li PA, Bang JJ (2015) Silver nanoparticle exposure induced mitochondrial stress, caspase-3 activation and cell death: amelioration by sodium selenite. Int J Biol Sci 11:860

    CAS  Google Scholar 

  • Mahendran G, Kumari BR (2016) Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. fruit extracts. Food Sci and Human Wellness 5:207–218

    Google Scholar 

  • Mahyoub JA, Aziz AT, Panneerselvam C, Murugan K, Roni M, Trivedi S, Nicoletti M, Hawas UW, Shaher FM, Bamakhrama MA, Canale A, Benelli G (2017) Sea grasses as sources of mosquito nano-larvicides? Toxicity and uptake of Halodule uninervis-biofabricated silver nanoparticles in dengue and Zika virus vector Aedes aegypti. J Clust Sci 28:565–580

    CAS  Google Scholar 

  • Maia MF, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malaria J S11

  • Malathi S, Rameshkumar G, Rengarajan RL, Rajagopal T, Muniasamy S, Ponmanickam P (2019) Phytofabrication of silver nanoparticles using Annona reticulata and assessment of insecticidal and bactericidal activities. J Environ Biol 40:626–633

    CAS  Google Scholar 

  • Mandal S (2010) Exploration of larvicidal and adult emergence inhibition activities of Ricinus communis seed extract against three potential mosquito vectors in Kolkata, India. Asian Pac J Trop Med 3:605–609

    Google Scholar 

  • Manjari MS, Karthi S, Ramkumar G, Muthusamy R, Natarajan D, Shivakumar MS (2014) Chemical composition and larvicidal activity of plant extracts from Clausena dentata (Willd) (Rutaceae) against dengue, malaria, and filariasis vectors. Parasitol Res 113:2475–2481

    Google Scholar 

  • Manosalva N, Tortella G, Diez MC, Schalchli H, Seabra AB, Durán N, Rubilar O (2019) Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity. World J Microbiol Biotechnol 35:88

    Google Scholar 

  • Mao BH, Chen ZY, Wang YJ, Yan SJ (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8:2445

    Google Scholar 

  • Mariselvam R, Ranjitsingh AJA, UshaRajaNanthini A, Kalirajan K, Padmalatha C, Selvakumar MP (2014) Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim Part A: Mol Biomol Spectrosc 129:537–541

    CAS  Google Scholar 

  • Marwa Thamer N, Mahmood EA, Hussam E (2017) The effect of silver nanoparticles on second larval instar of Trogoderma granarium everts (Insecta: Coleoptera: Dermrstidae). Int J Sci Nat 8:303–307

    Google Scholar 

  • Mathew N, Anitha MG, Bala TSL, Sivakumar SM, Narmadha R, Kalyanasundaram M (2009) Larvicidal activity of Saracaindica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res 104:1017–1025

    Google Scholar 

  • Mathivanan D, Gandhi PR, Mary RR, Suseem SR (2018) Larvicidal and acaricidal efficacy of different solvent extracts of Andrographis echioides against blood-sucking parasites. Physiol Mol Plant Path 101:187–196

    Google Scholar 

  • Mehmood A, Murtaza G, Bhatti TM, Kausar R (2017) Phyto-mediated synthesis of silver nanoparticles from Melia azedarach L. leaf extract: characterization and antibacterial activity. Arab J Chem 10:3048–3053

    Google Scholar 

  • Meng X, Abdlli N, Wang N, Lü P, Nie Z, Dong X, Lu S, Chen K (2017) Effects of Ag nanoparticles on growth and fat body proteins in silkworms (Bombyx mori). Biol Trace Elem Res 180:327–337

    CAS  Google Scholar 

  • Miranda JL, Esparza R, Rosas G (2017) Synthesis of silver nanoparticles using plant extracts. Mex J Mat Sci Eng 4:15–20

    Google Scholar 

  • Mohamed Anees A (2008) Larvicidal activity of Ocimum sanctum Linn. (Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Parasitol Res 103:1451–1453

    Google Scholar 

  • Mohan DR, Ramaswamy M (2007) Evaluation of larvicidal activity of the leaf extract of a weed plant, Ageratina adenophora, against two important species of mosquitoes, Aedes aegypti and Culex quinquefasciatus. Afr J Biotech 6:631–638

    Google Scholar 

  • Mohan L, Sharma P, Srivastava CN (2005) Evaluation of Solanum xanthocarpum extracts as mosquito larvicides. J Environ Biol 26:399–401

    Google Scholar 

  • Mohankumar TK, Vijayan VA (2017) Evaluation of larvicidal efficacy of Annona reticulata (leaf) and Psoralea corylifolia (seed) extracts against larvae of Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi at Mysore. Asia Pac J 2320:5504

    Google Scholar 

  • Moise IK, Zulu CL, Fuller DO, Beier JC (2018) Persistent barriers to implementing efficacious mosquito control activities in continental United States: insights from vector control experts. In: Khater HF (ed) From local to global impact of mosquitoes (online first). InTechOpen. https://doi.org/10.5772/intechopen.76774

    Chapter  Google Scholar 

  • Mommaerts V, Jodko K, Thomassen LC, Martens JA, Kirsch-Volders M, Smagghe G (2012) Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 6:554–561

    CAS  Google Scholar 

  • Mondal S, Roy N, Laskar RA, Sk I, Basu S, Mandal D (2011) Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahagoni JACQ) leaves. Colloids Surf B Biointerfaces 82:497–504

    CAS  Google Scholar 

  • Morejón B, Pilaquinga F, Domenech F, Ganchala D, Debut A, Neira M (2018) Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to control Aedes aegypti L. (Diptera: Culicidae). J Nanotechnol:1–8

  • Mubarak-Ali D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 85:360–336

    CAS  Google Scholar 

  • Mulla MS, Su T (1999) Activity and biological effects of neem products against arthropods of medical and veterinary importance. J Am Mosq Control Assoc 15:133–152

    CAS  Google Scholar 

  • Murugan K, Hwang SJ, Kovendan K, Kumar KP, Vasugi C, Kumar AN (2011) Use of plant products and copepods for control of the dengue vector, Aedes aegypti. Hydrobiologia 666:331–338

    Google Scholar 

  • Murugan K, Wei J, Saleh Alsalhi M, Nicoletti M, Paulpandi M, Samidoss CM, Dinesh D, Chandramohan B, Paneerselvam C, Subramaniam J, Vadivalagan C, Wei H, Amuthavalli P, Jaganathan A, Devanesan S, Higuchi A, Kumar S, Aziz AT, Nataraj D, Vaseeharan B, Canale A, Benelli G (2017) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res 116:495–502

    Google Scholar 

  • Muthukumaran U, Govindarajan M, Rajeswary M (2015a) Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 114:989–999

    Google Scholar 

  • Muthukumaran U, Govindarajan M, Rajeswary M, Hoti SL (2015b) Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res 114:1817–1827

    Google Scholar 

  • Muthuraman MS, Nithya S, Christena LR, Vadivel V, Subramanian NS, Anthony SP (2019) Green synthesis of silver nanoparticles using Nardostachys jatamansi and evaluation of its anti-biofilm effect against classical colonizers. Microb Pathog 126:1–5

    CAS  Google Scholar 

  • Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B Biointer 79:488–493

    CAS  Google Scholar 

  • Nakkala JR, Mata R, Gupta AK, Sadras SR (2014a) Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur J Med Chem 85:784–794

    CAS  Google Scholar 

  • Nakkala JR, Mata R, Gupta AK, Sadras SR (2014b) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterial activity. Ind Crop Prod 52:562–566

    Google Scholar 

  • Nalini M, Lena M, Sumathi P, Sundaravadivelan C (2017) Effect of phyto-synthesized silver nanoparticles on developmental stages of malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti. Egypt J Basic Appl Sci 4:212–218

    Google Scholar 

  • Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373

    Google Scholar 

  • Narayanan KB, Park HH (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140:185–192

    CAS  Google Scholar 

  • Nasar S, Murtaza G, Mehmood A, Bhatti TM, Raffi M (2019) Environmentally benign and economical phytofabrication of silver nanoparticles using Juglans regia leaf extract for antibacterial study. J Electron Mater 48:3562–3569

    CAS  Google Scholar 

  • Nathan SS (2007) The use of Eucalyptus tereticornis Sm. (Myrtaceae) oil (leaf extract) as a natural larvicidal agent against the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol 98:1856–1860

    CAS  Google Scholar 

  • Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B (2016) Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng: C 58:44–52

    CAS  Google Scholar 

  • Okumu FO, Knols BG, Fillinger U (2007) Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malar J 6:63

    Google Scholar 

  • Olikiabo JI, Olayemi IK, Ukubuiwe AC, Adeniyi KA, Aina A, Oluwafemi OJ, Samuel MO (2018) Larvicidal and growth-regulatory activities of methanolic and N-hexane extracts of leaf of Ficusvallis-choudae Delile (Rosales: Moraceae) against Culex quinquefasciatus (Diptera: Culicidae). J Med Plants Res 8:3

    Google Scholar 

  • Pandey V, Agrawal V, Raghavendra K, Dash AP (2007) Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say). Parasitol Res 102:171–174

    Google Scholar 

  • Pandey V, Chopra M, Agrawal V (2011) In vitro isolation and characterization of biolarvicidal compounds from micropropagated plants of Spilanthes acmella. Parasitol Res 108:297–304

    Google Scholar 

  • Parthiban E, Manivannan N, Ramanibai R, Mathivanan N (2019) Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol Rep 21:00297

    Google Scholar 

  • Patel MK, Tiwari A, Vijay Saxena L (2018) Larvicidal activity of crude Solanum nigrum leaf and berries extract against dengue vector—Aedes aegypti. Int J Cur Res Rev 10:16

    CAS  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011) Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and nontarget fish Poecilia reticulata. Parasitol Res 108:1253–1263

    Google Scholar 

  • Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012a) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecilia reticulata. Parasitol Res 111:555–562

    Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012b) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822

    Google Scholar 

  • Pavela R (2014) Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia Pac Entomol 17:287–293

    CAS  Google Scholar 

  • Pavela R (2016) History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—a review. Plant Protect Sci 52:229–241

    CAS  Google Scholar 

  • Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007

    CAS  Google Scholar 

  • Pavela R, Murugan K, Canale A, Benelli G (2017) Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind Crop Prod 97:338–344

    CAS  Google Scholar 

  • Pavela R, Maggi F, Iannarelli R, Benelli G (2019) Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Trop 193:236–271

    CAS  Google Scholar 

  • Pineda-Cortel MRB, Cabantog RJR, Caasi PM, Ching CAD, Perez JBS, Godisan PGM, Latorre CMG, Lucero DR, Salonga RB (2019) Larvicidal and ovicidal activities of Artocarpus blancoi extracts against Aedes aegypti. Pharm Biol 57:120–124

    CAS  Google Scholar 

  • Pirtarighat S, Ghannadnia M, Baghshahi S (2019) Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem 9:1–9

    CAS  Google Scholar 

  • Polson KA, Brogdon WG, Rawlins SC, Chadee DD (2011) Characterization of insecticide resistance in Trinidadian strains of Aedes aegypti mosquitoes. Acta Trop 117:31–38

    CAS  Google Scholar 

  • Poopathi S, De Britto LJ, Praba VL, Mani C, Praveen M (2015) Synthesis of silver nanoparticles from Azadirachta indica—a most effective method for mosquito control. Environ Sci Pollut Res 22:2956–2963

    CAS  Google Scholar 

  • Posgai R, Cipolla-McCulloch CB, Murphy KR, Hussain SM, Rowe JJ, Nielsen MG (2011) Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere 85:34–42

    CAS  Google Scholar 

  • Prabhakar K, Jebaneson A (2004) Larvicidal efficacy of some cucurbitaceous plant leaf extracts against Culex quinquefasciatus (Say). Bioresour Technol 95:113–114

    Google Scholar 

  • Prasad TNVKV, Elumalai E (2011) Biofabrication of ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac J Trop Biomed 1:439–442

    CAS  Google Scholar 

  • Prasad KM, Raghavendra K, Verma V, Velamuri PS, Pande V (2017) Esterases are responsible for malathion resistance in Anopheles stephensi: a proof using biochemical and insecticide inhibition studies. J Vector Borne Dis 54:226

    CAS  Google Scholar 

  • Pratheeba T, Vivekanandhan P, Faeza AN, Natarajan D (2019) Chemical constituents and larvicidal efficacy of Naringi crenulata (Rutaceae) plant extracts and bioassay guided fractions against Culex quinquefasciatus mosquito (Diptera: Culicidae). Biocat Agric Biotechnol 19:101–137

    Google Scholar 

  • Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 11:997–1006

    Google Scholar 

  • Rafique M, Sadaf I, Tahir MB, Rafique MS, Nabi G, Iqbal T, Sughra K (2019) Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications. Mater Sci Eng C 99:1313–1324

    CAS  Google Scholar 

  • Raghavendra K, Singh SP, Subbarao SK, Dash AP (2009) Laboratory studies on mosquito larvicidal efficacy of aqueous & hexane extracts of dried fruit of Solanum nigrum Linn. Indian J Med Res 130:74

    CAS  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Saleem G, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555

    CAS  Google Scholar 

  • Raj A, Shah P, Agrawal N (2017) Dose-dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: an in-vivo study. PLoS One 12:e0178051

    Google Scholar 

  • Rajkumar S, Jebanesan A (2005) Larvicidal and adult emergence inhibition effect of Centella asiatica Brahmi (Umbelliferae) against mosquito Culex quinquefasciatus Say (Diptera: Culicidae). Afr J Biomed Res 8:31-3.

  • Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118:196–203

    CAS  Google Scholar 

  • Rajesh A, Shamsudin M (2017) Evaluation of ovicidal and larvicidal potential of Kalanchoe pinnata leaf extracts against filarial mosquito vector, Culex quinquefasciatus. Int J Mosq Res 4:142–147

    Google Scholar 

  • Rajkumar R, Shivakumar MS, Nathan SS, Selvam K (2018) Pharmacological and larvicidal potential of green synthesized silver nanoparticles using Carmona retusa (Vahl) Masam leaf extract. J Clust Sci 29:1243–1253

    CAS  Google Scholar 

  • Raveen R, Ahmed F, Pandeeswari M, Reegan D, Tennyson S, Arivoli S, Jayakumar M (2017) Laboratory evaluation of a few plant extracts for their ovicidal, larvicidal and pupicidal activity against medically important human dengue, chikungunya and Zika virus vector, Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). Int J Mosq Res 4:17–28

    Google Scholar 

  • Ravichandran V, Vasanthi S, Shalini S, Shah SAA, Harish R (2016) Greensynthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater Lett 180:264–267

    CAS  Google Scholar 

  • Rawlins SC (1998) Spatial distribution of insecticide resistance in Caribbean populations of Aedes aegypti and its significance. Rev Panam Salud Publica 4:243–251

    CAS  Google Scholar 

  • Rawlins SC, Ou Hing Wan J (1995) Resistance in some Caribbean populations of Aedes aegypti to several insecticides. J Am Mosquito Contr 11:59–65

    CAS  Google Scholar 

  • Rivera-Rangel RD, Gonzalez-Munoz MP, Avila-Rodriguez M, Razo-Lazcano TA, Solans C (2017) Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf A Physicochem Eng Asp 536:60–67

    Google Scholar 

  • Roark RC (1947) Some promising insecticidal plants. Econ Bot 1(4):437–445

    CAS  Google Scholar 

  • Rodrigues AM, Silva AAS, Pinto CCC, Lima dos Santos D, Carneiro de Freitas JC, Martins VEP, Maia de Morais S (2019) Larvicidal and enzymatic inhibition effects of Annona muricata seed extract and main constituent Annonacin against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Pharma 12:112

    CAS  Google Scholar 

  • Rolim WR, Pelegrino MT, de Araújo LB, Ferraz LS, Costa FN, Bernardes JS, Rodigues T, Brocchi M, Seabra AB (2019) Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl Surf Sci 463:66–74

    CAS  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:981–990

    Google Scholar 

  • Roopan SM, Madhumita G, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crop Prod 43:631–635

    CAS  Google Scholar 

  • Rout A, Jena PK, Parida UK (2013) Green synthesis of silver nanoparticles using leaves extract of Centella asiatica L. for studies against human pathogens. Int J Pharm Biol Sci 4:661–674

    CAS  Google Scholar 

  • Rupiasih NN, Aher A, Gosavi S, Vidyasagar PB (2013) Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana: a novel approach towards poisonous plant utilization. J Phys Conf Ser 423:1–8

    Google Scholar 

  • Sadeghi B, Gholamhoseinpoor F (2015) A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Part A: Mol Biomol Spectrosc 134:310–315

    CAS  Google Scholar 

  • Sadeghi B, Rostami A, Momeni SS (2015) Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta Part A: Mol Biomol Spectrosc 134:326–332

    CAS  Google Scholar 

  • Saini H, Yadav R, Kumar D, Kumar G, Agrawal V (2019) Cullen corylifolium (L.) Medik. seed extract, an excellent system for fabrication of silver nanoparticles and their multipotency validation against different mosquito vectors and human cervical cancer cell line. J Clust Sci:1–15

  • Sakthivadivel M, Saravanan T, Tenzin G, Jayakumar M, Raveen R (2016) Laboratory evaluation of two Meliaceae species as Larvicides against Culex quinquefasciatus Say (Diptera: Culicidae). Vector Biol J 10:19–33

    Google Scholar 

  • Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai UR (2009) Characterization and mosquito repellent activity of citronella oil nano emulsion. Int J Pharm 372:105–111

    CAS  Google Scholar 

  • Salam HA, Rajiv P, Kamaraj M, Jagadeeswaran P, Gunalan S, Sivaraj R (2012) Plants: green route for nanoparticle synthesis. Int Res J Biol Sci 1:85–90

    Google Scholar 

  • Santhosh SB, Yuvarajan R, Natarajan D (2015) Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. J Photo B: Biol 153:184–190

    CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702

    Google Scholar 

  • Sap-Iam N, Homklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas ST (2010) UV irradiation-induced silver nanoparticles as mosquito larvicides. J Appl Sci 10:3132–3136

    CAS  Google Scholar 

  • Saratale RG, Benelli G, Kumar G, Kim DS, Saratale GD (2018) Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ Sci Pollut Res 25:10392–10406

    CAS  Google Scholar 

  • Sareen SJ, Pillai RK, Chandramohanakumar N, Balagopalan M (2012) Larvicidal potential of biologically synthesized silver nanoparticles against Aedes albopictus. Res J Recent Sci 1:52–56

    CAS  Google Scholar 

  • Sarsar V, Selwal KK, Selwal MK (2017) Green synthesis of silvernanoparticles using leaf extract of Mangifera indica and evaluation of their antimicrobial activity. Int J Microbiol Biotechnol 3:27–32

    Google Scholar 

  • Schmutterer H (1988) Potential of azadirachtin-containing pesticides for integrated pest control in developing and industrialized countries. J Insect Physiol 34:713–719

    CAS  Google Scholar 

  • Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 15:197–271

    Google Scholar 

  • Shah M, Poinern GEJ, Fawcett D (2016) Biogenic synthesis of silver nanoparticles via indigenous Anigozanthos Manglesii, (red and green kangaroo paw) leaf extract and its potential antibacterial activity. Int J Res Med Sci 4:3427–3432

    Google Scholar 

  • Shahi M, Hanafi-Bojd AA, Iranshahi M, Vatandoost H, Hanafi-Bojd MY (2010) Larvicidal efficacy of latex and extract of Calotropis procera (Gentianales: Asclepiadaceae) against Culex quinquefasciatus and Anopheles stephensi (Diptera: Culicidae). J Vector Borne Dis 47:185–188

    CAS  Google Scholar 

  • Shahzad K, Manzoor F (2019) Nanoformulations and their mode of action in insects: a review of biological interactions. Drug Chem Toxicol:1–11

  • Shaik M, Khan M, Kuniyil M, Al-Warthan A, Alkhathlan H, Siddiqui M, Shaik J, Ahamed A, Mahmood A, Khan M, Adil S (2018) Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10:913

    Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    CAS  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2006) Phytoextract-induced developmental deformities in malaria vector. Bioresour Technol 97:1599–1604

    CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    CAS  Google Scholar 

  • Sharma G, Kapoor H, Chopra M, Kumar K, Agrawal V (2014) Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds. Parasitol Res 113:197–209

    Google Scholar 

  • Sharma V, Kaushik S, Pandit P, Dhull D, Yadav JP, Kaushik S (2019) Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl Microbiol Biotechnol 103:881–891

    CAS  Google Scholar 

  • Shivakumar MS, Srinivasan R, Natarajan D (2013) Larvicidal potential of some Indian medicinal plant extracts against Aedes aegypti (L.). Asian J Pharm Clin Res 6:77–80

    Google Scholar 

  • Shukla D, Wijayapala S, Vankar PS (2018) Effective mosquito repellent from plant based formulation. Int J Mosq Res 5:19–24

    Google Scholar 

  • Sillo AJ, Makirita WE, Swai H, Chacha M (2019) Larvicidal activity of Hypoestes forskaolii (Vahl) R. Br root extracts against Anopheles gambiae Giless, Aedes aegypti L, and Culex quinquefasciatus Say. J. Exp Pharmacol 11:23

    CAS  Google Scholar 

  • Singh RK, Dhiman RC, Mittal PK (2006) Mosquito larvicidal properties of Momordica charantia Linn (family: Cucurbitaceae). J Vector Dis 43:88

    CAS  Google Scholar 

  • Singh SP, Raghavendra K, Singh RK, Mohanty SS, Dash AP (2008) Evaluation of Tribulus terrestris Linn (Zygophyllaceae) acetone extract for larvicidal and repellence activity against mosquito vectors. J Commun Dis 40:255–261

    CAS  Google Scholar 

  • Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN (2010) Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Bios 5:483–489

    Google Scholar 

  • Singh RK, Mittal PK, Kumar G, Dhiman RC (2014) Evaluation of mosquito larvicidal efficacy of leaf extract of a cactus plant, Agave sisalana. J Entomol Zool Stud 2:83–86

    Google Scholar 

  • Sogan N, Kapoor N, Singh H, Kala S, Nayak A, Nagpal BN (2018) Larvicidal activity of Ricinus communis extract against mosquitoes. J Vector Borne Dis 55:282

    Google Scholar 

  • Sola P, Mvumi BM, Ogendo JO, Mponda O, Kamanula JF, Nyirenda SP, Belmain SR, Stevenson PC (2014) Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: making a case for plant-based pesticidal products. Food Sec 6(3):369–384

    Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Google Scholar 

  • Srinivasan S, Wankhar W, Rathinasamy S, Rajan R (2015) Larvicidal potential of Indigofera tinctoria (Fabaceae) on dengue vector (Aedes aegypti) and its antimicrobial activity against clinical isolates. Asian J Pharm Clin Res 8:316–319

    Google Scholar 

  • Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on impact of biosynthesized silver nanoparticles (AgNP) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera:Culicidae). Parasitol Res 112:487–499

    Google Scholar 

  • Subashini K, Jeyasankar A, Ramesh N, Sivakami R (2016) Larvicidal activity of silver nanoparticles synthesized by the leaf extracts of Azadirachta indica against Culex quinquefasciatus (Say) (Diptera: Culicidae). Int J Zool Stud 1:07–11

    Google Scholar 

  • Subramaniam J, Kovendan K, Kumar PM, Murugan K, Walton W (2012) Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against chikungunya vector, Aedes aegypti. Saudi J Biol Sci 19:503–509

    Google Scholar 

  • Suganya A, Murugan K, Kovendan K, Kumar PM, Hwang JS (2013) Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol Res 112:1385–1397

    Google Scholar 

  • Suganya G, Karthi S, Shivakumar MS (2014) Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 113:875–880

    Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237

    CAS  Google Scholar 

  • Sultana N, Raul PK, Goswami D, Das B, Gogoi HK, Raju PS (2018) Nanoweapon: control of mosquito breeding using carbon-dot-silver nanohybrid as a biolarvicide. Environ Chem Lett 16:1017–1023

    CAS  Google Scholar 

  • Sundaravadivelan C, Padmanabhan MN, Sivaprasath P, Kishmu L (2013) Biosynthesized silver nanoparticles from Pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae). Parasitol Res 112:303–311

    Google Scholar 

  • Sunita D, Tambhale D, Parag V, Adhyapak A (2014) Facile green synthesis of silver nanoparticles using Psoralea corylifolia seed extract and their in-vitro antimicrobial activities. Int J Pharm Biol Sci 5:457–467

    Google Scholar 

  • Sutthanont N, Attrapadung S, Nuchprayoon S (2019) Larvicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against Culex quinquefasciatus. Insects 10:27

    Google Scholar 

  • Tesfazghi K, Hill J, Jones C, Ranson H, Worrall E (2016) National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria. Health Policy Plan 31:9–101

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed-Nanotechnol 6:257–262

    CAS  Google Scholar 

  • Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK (2016) Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol. B Biol 163:311–318

    CAS  Google Scholar 

  • Thomas TG, Rao S, Lal S (2004) Mosquito larvicidal properties of essential oil of an indigenous plant, Ipomoea cairica Linn. Jpn J Infect Dis 57:176–177

    Google Scholar 

  • Thomas B, Vithiya B, Prasad T, Mohamed SB, Magdalane CM, Kaviyarasu K, Maaza M (2019) Antioxidant and photocatalytic activity of aqueous leaf extract mediated green synthesis of silver nanoparticles using Passiflora edulis f. flavicarpa. J Nanosci Nanotechnol 19:2640–2648

    CAS  Google Scholar 

  • Thombre R, Parekh F, Patil N (2014) Green synthesis of silver nanoparticles using seed extract of Argyreia nervosa. Int J Pharm Biol Sci 5:114–119

    CAS  Google Scholar 

  • Tiwary M, Naik SN, Tewary DK, Mittal PK, Yadav S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vector Borne Dis 44:198

    CAS  Google Scholar 

  • Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17:1217–1220

    CAS  Google Scholar 

  • Ulug B, Turkdemir MH, Cicek A, Mete A (2015) Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochimica Acta Part A. Mol Biomol Spectrosc 135:153–161

  • Vahitha R, Venkatachalam MR, Murugan K, Jebanesan A (2002) Larvicidal efficacy of Pavonia zeylanica L. and Acacia ferruginea D.C. against Culex quinquefasciatus say. Bioresour Technol 82(2):203–204

    CAS  Google Scholar 

  • Vatandoost H, Vaziri VM (2004) Larvicidal activity of a neem tree extract (Neemarin) against mosquito larvae in the Islamic Republic of Iran. East Medd Health J 10:573–581

    CAS  Google Scholar 

  • Vazquez-Prokopec GM, Chaves LF, Ritchie SA, Davis J, Kitron U, Powers AM (2010) Unforeseen costs of cutting mosquito surveillance budgets. PLoS Negl Trop Dis 4(10):e858

    Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 112:4073–4085

    Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014a) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785

    Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014b) Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113:2363–2373

    Google Scholar 

  • Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N (2010) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15:113–120

    Google Scholar 

  • Veisi H, Azizi S, Mohammadi P (2018) Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J Clean Prod 170:1536–1543

    CAS  Google Scholar 

  • Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6:95–101

    CAS  Google Scholar 

  • Velu K, Elumalai D, Hemalatha P, Janaki A, Babu M, Hemavathi M, Kaleena PK (2015) Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environ Sci Pollut Res 22:17769–17779

    CAS  Google Scholar 

  • Veni T, Pushpanathan T, Mohanraj J (2016) Ovicidal and larvicidal efficacy of Crataeva magna (Lour.) DC. (Family: Capparidaceae) against the Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. International Journal of Pure and Applied Zoology 4:149 ̶–14154

    Google Scholar 

  • Veni T, Pushpanathan T, Mohanraj J (2017) Larvicidal and ovicidal activity of Terminalia chebula Retz. (Family: Combretaceae) medicinal plant extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. J Parasit Dis 41:693–702

    Google Scholar 

  • Vetrivel C, Balamuralikrishnan B, Durairaj K, Sungkwon P, Velmurugan P, Ragavendran C, Sigamani S, Maruthupandian A (2019) Fabrication and characterization of noble crystalline silver nanoparticles from Ceropegia bulbosa Roxb root tuber extract for antibacterial, larvicidal and histopathology applications. Nano Lett 11:11–21

    Google Scholar 

  • Vijayaraghavan K, Nalini S, Prakash NU, Madhankumar D (2012) One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf B 94:114–117

    CAS  Google Scholar 

  • Villaverde JJ, Sevilla-Morán B, Sandín-España P, López-Goti C, Alonso-Prados JL (2014) Biopesticides in the framework of the European pesticide regulation (EC) no. 1107/2009. Pest Manag Sci 70(1):2–5

    CAS  Google Scholar 

  • Warikoo R, Ray A, Sandhu JK, Samal R, Wahab N, Kumar S (2012) Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L. Asian Pac J Trop Biomed 2:152–155

    Google Scholar 

  • WHO 2017a. World malaria report Available at http://www.who.int/malaria/publications/world-malaria-report-2017/en. Accessed 30 June 2018

  • WHO 2017b. Geneva 2017. https://www.who.int/denguecontrol/en/

  • WHO 2017c. https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis

  • WHO 2018. https://www.cdc.gov/zika/reporting/2017-casecounts.html.

  • William GB, Janet C (1997) Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J Am Mosquito Contr 13:233–237

    Google Scholar 

  • Xia H, Wang Y, Atoni E, Zhang B, Yuan Z (2018) Mosquito-associated viruses in China. Virol Sin 33:5–20

    Google Scholar 

  • Yadav R, Saini H, Kumar D, Pasi S, Agrawal V (2019) Bioengineering of Piper longum L. extract mediated silver nanoparticles and their potential biomedical applications. Mater Sci Eng C 104:109–984

    Google Scholar 

  • Yamaguchi K, Matsumoto H, Ochiai M, Tsuzuki S, Hayakawa Y (2012) Enhanced expression of stress-responsive cytokine-like gene retards insect larval growth. Insect Biochem Mol Biol 42:183–192

    CAS  Google Scholar 

  • Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16:6667–6676

    CAS  Google Scholar 

  • Zhang XF, Liu ZG, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534

    Google Scholar 

Download references

Funding

The authors are grateful to the Science and Engineering Research Board, Government of India for providing Major Research Project (EMR/2016/001673) to Veena Agrawal and the University of Delhi, India for their support in searching literature and preparation of the review article. Dinesh kumar is indebted to the Director of ICMR-NIMR and ICMR, New Delhi for the ICMR-Post-Doctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Agrawal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Giovanni Benelli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Kumar, P., Singh, H. et al. Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. Environ Sci Pollut Res 27, 25987–26024 (2020). https://doi.org/10.1007/s11356-020-08444-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08444-6

Keywords

Navigation