Skip to main content
Log in

Biological index based on epiphytic diatom assemblages is more restrictive than the physicochemical index in water assessment on an Amazon floodplain, Brazil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Canadian Water Quality Index (CWQI) provides protection for freshwater life promoting healthy ecosystems and safeguarding human health. Biological Diatom Index (BDI) was developed to indicate the ecological status and water quality of freshwater systems. This paper evaluates the relations between the two different indices. During rising and falling, water samples were taken in the Curuai Floodplain, Brazil. CWQI was calculated using 14 physicochemical parameters and 1 microbiological parameter. The limits were established according to freshwater quality conditions and standards based on water use classes 1 and 2 determined in CONAMA 357 legislation and British Columbia. Canadian Water Quality Index categorization ranged from “marginal” to “excellent,” most sampling units were “good” (71%), followed by “fair” (12%) and “excellent” (12%) water quality. Total phosphorus (38 times), chlorophyll a (20), dissolved oxygen (10), and total organic carbon (10) were the parameters that presented the most non-compliance values. Encyonema silesiacum (14%), Gomphonema parvulum (13%), and Navicula cryptotenella (12%) were the main taxa in the rising period, while G. lagenula, E. silesiacum, and Fragilaria capucina were the main taxa during the falling period. BDI ranges from I to V water quality classes. We observed “poor” to “very good” ecological status, with most sampling units “moderate” (52%) and “good” (29%). Water quality for class 2 was better than water quality for class 1, as the limits of the parameters evaluated were more restrictive in class 1 than in class 2 and the predominant uses of water require a higher degree of water purity. The biological index based on diatoms was the most restrictive index whose water classes and categorizations have shown an ecological status that could threaten the protection of aquatic communities on the Curuai floodplain. We suggest the combined use of both indices—physicochemical and biological for water quality assessment in this type of environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abril G, Martinez JM, Artigas LF, Moreira-Turcq P, Benedetti MF, Vidal L, Meziane T, Kim JH, Bernardes MC, Savoye N, Deborde J, Souza EL, Albéric P, Souza MFL, Roland F (2014) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505:395–398. https://doi.org/10.1038/nature12797

    Article  CAS  Google Scholar 

  • Affonso AG, Barbosa C, Novo EMLM (2011) Water quality changes in floodplain lakes due to the Amazon River flood pulse: Lago Grande de Curuai (Pará). Braz J Biol 71(3):601–610. https://doi.org/10.1590/S1519-69842011000400004

    Article  CAS  Google Scholar 

  • Affonso AG, Queiroz HL, Novo EMLM (2015) Abiotic variability among different aquatic systems of the Central Amazon floodplain during drought and flood events. Braz J Biol 75(4):60–69. https://doi.org/10.1590/1519-6984.04214

    Article  Google Scholar 

  • AFNOR (2000) Norme Française NF T 90–354. Qualité de l’eau. Détermination de l’Indice Biologique Diatomées (IBD). Association Française de Normalisation, France

    Google Scholar 

  • Almeida O (2004) Fisheries Management in the Brazilian Amazon. PhD Thesis. Deparment of Environmental Science and Technology, Imperial College, London

  • Alves MTR, Teresa FB, Nabout JC (2014) A global scientific literature of research on water quality indices: trends, biases and future directions. Acta Limnol Bras 26(3):245–253. https://doi.org/10.1590/S2179-975X2014000300004

    Article  CAS  Google Scholar 

  • ANA (2012) Plano estratégico de recursos hídricos dos afluentes da margem direita do rio Amazonas: resumo executivo. Agência Nacional de Águas, Brasília

    Google Scholar 

  • ANA (2017) Conjuntura dos Recursos Hídricos no Brasil: relatório pleno. Agência Nacional de Águas, Brasília

    Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62(1):245–253. https://doi.org/10.1111/j.1541-0420.2005.00440.x

    Article  Google Scholar 

  • APHA (2017) Standard methods for examination of water and wastewater, 23rd edn. American Public Health Association, Washington

    Google Scholar 

  • Arnesen AS, Silva TS, Hess LL, Novo EM, Rudorff CM, Chapman BD, McDonald KC (2013) Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sens Environ 130:51–61. https://doi.org/10.1016/j.rse.2012.10.035

    Article  Google Scholar 

  • Baker A (2003) Land use and water quality. Hydrol Process 17(12):2499–2501. https://doi.org/10.1002/hyp.5140

    Article  Google Scholar 

  • Baldwin DS, Colloff MJ, Mitrovic SM, Bond NR, Wolfenden B (2016) Restoring dissolved organic carbon subsidies from floodplains to lowland river food webs: a role for environmental flows? Mar Freshw Res 67(9):1387–1399

    Article  CAS  Google Scholar 

  • Bayley PB (1995) Understanding large river-floodplain ecosystems: significant economic advantages and increased biodiversity and stability would result from restoration of impaired systems. BioScience 45(3):153–158. https://doi.org/10.2307/1312554

    Article  Google Scholar 

  • Beaulac MN, Reckhow KH (1982) An examination of land use-nutrient export relationships. JAWRA J Am Water Resour Assoc 18(6):1013–1024. https://doi.org/10.1111/j.1752-1688.1982.tb00109.x

    Article  CAS  Google Scholar 

  • Bere T (2016) Are diatom-based biotic indices developed in eutrophic, organically enriched waters reliable monitoring metrics in clean waters? Ecol Indic 62:312–316. https://doi.org/10.1016/j.ecolind.2015.11.008

    Article  CAS  Google Scholar 

  • Bellinger EG, Sigee DC (2015) Freshwater algae: identification, enumeration and use as bioindicators. 2nd Ed. John Wiley & Sons, United Kingdom

  • Bicudo CEM, Menezes M (2017) Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições, 3rd edn. Rima, São Carlos

    Google Scholar 

  • Biggs TW, Dunne T, Domingues TF, Martinelli LA (2002) Relative influence of natural watershed properties and human disturbance on stream solute concentrations in the southwestern Brazilian Amazon basin. Water Resour Res 38(8):25–1–25–16

    Article  Google Scholar 

  • Biggs T, Dunne T, Martinelli L (2004) Natural controls and human impacts on stream nutrient concentrations in a deforested region of the Brazilian Amazon basin. Biogeochemistry 68(2):227–257. https://doi.org/10.1023/B:BIOG.0000025744.78309.2e

    Article  CAS  Google Scholar 

  • Bomfim EO, Kraus CN, Bonnet MP, Lobo MTMPS, Nogueira IS, Peres LGM, Boaventura GR, Laques AE, Garnier J, Marques DM (2019) Trophic state index validation based on phytoplankton functional groups approach in Amazon floodplains lakes. Inland Waters 9(3):309–319. https://doi.org/10.1080/20442041.2019.1570785

    Article  CAS  Google Scholar 

  • Bonnet MP, Barroux G, Seyler P, Pecly G, Moreira-Turcq P, Lagane C, Cochonneau G, Viers J, Seyler F, Guyot JL (2005) Seasonal links between the Amazon corridor and its flood plain: the case of the varzea of Curuaí. In: Dynamics and Biogeochemistry of River Corridors and Wetlands (Proceedings of symposium S4 held during the Seventh IAHS Scientific Assembly, IAHS Publication 294, Foz de Iguaçu, Brasil, 69–77

  • Bonnet MP, Barroux G, Martinez JM, Seyler F, Moreira-Turcq P, Cochonneau G, Melack JM, Boaventura G, Maurice-Bourgoin L, León JG, Roux E, Calmant S, Kosuth P, Guyot JL, Seyler P (2008) Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí). J Hydrol 349(1–2):18–30. https://doi.org/10.1016/j.jhydrol.2007.10.055

    Article  Google Scholar 

  • Bonnet MP, Garnier J, Barroux G, Boaventura GR, Seyler P (2016) Biogeochemical functioning of Amazonian floodplains: the case of Lago Grande de Curuaí. In: Pokrovsky OS (ed) Riparian zones: charateristics, management practices and ecological impacts. Nova Publ, New York, pp 77–98

    Google Scholar 

  • Bonnet MP, Pinel S, Garnier J, Bois J, Boaventura GR, Seyler P, Marques DM (2017) Amazonian floodplain water balance based on modelling and analyses of hydrologic and electrical conductivity data. Hydrol Process 31(9):1702–1718. https://doi.org/10.1002/hyp.11138

    Article  Google Scholar 

  • Boyd CE (2015) Water quality: an introduction, 2nd edn. Springer

  • Braga KAAF, da Silva FF, Schaffrath VR (2011) Microbacia do Igarapé do Gigante: Unidade de planejamento para a gestão da Bacia do Tarumã. Rev Agron Meio Ambient 5(1):103–129

    Google Scholar 

  • Braga GG, Becker V, Oliveira JNPD, Mendonça Junior JRD, Bezerra AFM, Torres LM, Galvão AMF, Mattos A (2015) Influence of extended drought on water quality in tropical reservoirs in a semiarid region. Acta Limnol Bras 27(1):15–23. https://doi.org/10.1590/S2179-975X2214

    Article  Google Scholar 

  • BRASIL (1997) Presidência da República Casa Civil. Lei N° 9.433, 8 de janeiro de 1997. Institui a Política Nacional de Recursos Hídricos e cria o Sistema Nacional de Gerenciamento de Recursos Hídricos. Brasília. Pub. Diário Oficial da República Federativa do Brasil

  • BRASIL (2001) Conselho Nacional do Meio Ambiente. Resolução CONAMA N° 274, 25 de janeiro de 2001. Define os critérios de balneabilidade em águas brasileiras. Diário Oficial da República Federativa do Brasil

  • BRASIL (2005) Conselho Nacional do Meio Ambiente, Resolução CONAMA N° 357, 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais. Diário Oficial da República Federativa do Brasil

  • BRASIL (2008) Conselho Nacional do Meio Ambiente. Resolução CONAMA N° 91, 05 de novembro de 2008. Dispõe sobre procedimentos gerais para o enquadramento dos corpos de água superficiais e subterrâneos. Diário Oficial da República Federativa do Brasil

  • BRASIL (2017) Ministério da Saúde. Portaria de Consolidação N° 5, 03 de outubro de 2017. Consolidação das normas sobre as ações e os serviços de saúde do Sistema Único de Saúde. Diário Oficial da República Federativa do Brasil

  • Brasil J, Attayde JL, Vasconcelos FR, Dantas DD, Huszar VL (2016) Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770(1):145–164

    Article  CAS  Google Scholar 

  • Brooks BW, Lazorchak JM, Howard MDA, Johnson MVV, Morton SL, Perkins DAK, Reavie ED, Scott GI, Smith SA, Steevens JA (2016) Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ Toxicol Chem 35(1):6–13. https://doi.org/10.1002/etc.3220

    Article  CAS  Google Scholar 

  • Castello L, Macedo MN (2016) Large-scale degradation of Amazonian freshwater ecosystems. Glob Chang Biol 22(3):990–1007. https://doi.org/10.1111/gcb.13173

    Article  Google Scholar 

  • Castello L, McGrath DG, Hess LL, Coe MT, Lefebvre PA, Petry P, Macedo MN, Renó VF, Arantes CC (2013) The vulnerability of Amazon freshwater ecosystems. Conserv Lett 6(4):217–229. https://doi.org/10.1111/conl.12008

    Article  Google Scholar 

  • CCME (1999) Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment, Winnipeg

  • CCME (2001) Canadian water quality guidelines for the protection of aquatic life: CCME Water Quality Index 1.0, Technical Report. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg

  • CCME (2003) Canadian water quality guidelines for the protection of aquatic life: guidance on the site-specific application of water quality guidelines in Canada: procedures for deriving numerical water quality objectives. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg

  • Codd GA (2000) Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol Eng 16(1):51–60. https://doi.org/10.1016/S0925-8574(00)00089-6

    Article  Google Scholar 

  • Connor R (2015) The United Nations world water development report 2015: water for a sustainable world, vol 1. UNESCO Publishing, France

    Google Scholar 

  • Cosgrove WJ, Rijsberman FR (2014) World water vision: making water everybody's business, 1st edn. Routledge Ed, London

    Book  Google Scholar 

  • Costa SM, Brondízio ES (2009) Dependência inter-urbana entre as cidades amazônicas: crescimento urbano, deficiências em infra-estrutura e redes Sociais. Redes 14(3):211–234

    Google Scholar 

  • Costa LF, Wengrat S, Bicudo DC (2017) Diatoms from distinct habitats of a highly heterogeneous reservoir, Billings Complex, southeastern Brazil. Hoehnea 44(4):559–579. https://doi.org/10.1590/2236-8906-12/2017

    Article  Google Scholar 

  • Coste M, Boutry S, Tison-Rosebery J, Delmas F (2009) Improvements of the Biological Diatom Index (BDI): description and efficiency of the new version (BDI-2006). Ecol Indic 9(4):621–650. https://doi.org/10.1016/j.ecolind.2008.06.003

    Article  CAS  Google Scholar 

  • Cox EJ (2015) Diatoms, Diatomaceae (Bacillariophyceae s.l., Bacillariophyta). In: Frey W (ed) Syllabus of plant families. A. Engler Syllabus der Pflantzenfamilien. 2/1 Photoautotrophic eukaryotic algae. Borntraeger, Stuttgart

    Google Scholar 

  • Dalu T, Bere T, Froneman PW (2016) Assessment of water quality based on diatom indices in a small temperate river system, Kowie River, South Africa. Water SA 42(2):183–193. https://doi.org/10.4314/wsa.v42i2.02

    Article  CAS  Google Scholar 

  • Epele LB, Manzo LM, Grech MG, Macchi P, Claverie AÑ, Lagomarsino L, Miserendino ML (2018) Disentangling natural and anthropogenic influences on Patagonian pond water quality. Sci Total Environ 613:866–876. https://doi.org/10.1016/j.scitotenv.2017.09.147

    Article  CAS  Google Scholar 

  • Fantin-Cruz I, Pedrollo O, Girard P, Zeilhofer P, Hamilton SK (2016) Changes in river water quality caused by a diversion hydropower dam bordering the Pantanal floodplain. Hydrobiologia 768(1):223–238. https://doi.org/10.1007/s10750-015-2550-4

    Article  CAS  Google Scholar 

  • FAO (2016) AQUASTAT website. Food and Agriculture Organization of the United Nations. Website accessed on [2018/07/03]. http://www.fao.org/nr/water/aquastat/basins/amazon/print1.stm

  • Fernandes NC, Scalize PS (2015) Comparação entre dois métodos para determinação da qualidade da água tratada. Ciência Engenharia 24(2):85–93. https://doi.org/10.14393/19834071.2015.30122

    Article  Google Scholar 

  • Friedrich J, Janssen F, Aleynik D, Bange HW, Boltacheva N, Çagatay MN, Dale AW, Etiope G, Erdem Z, Geraga M, Gilli A, Gomoiu MT, Hall POJ, Hansson D, He Y, Holtappels M, Kirf MK, Kononets M, Konovalov S, Lichtschlag A, Livingstone DM, Marinaro G, Mazlumyan S, Naeher S, North RP, Papatheodorou G, Pfannkuche O, Prien R, Rehder G, Schubert CJ, Soltwedel T, Sommer S, Stahl H, Stanev EV, Teaca A, Tengberg A, Waldmann C, Wehrli B, Wenzhöfer F (2014) Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11:1215–1259. https://doi.org/10.5194/bg-11-1215-2014

    Article  Google Scholar 

  • Germer S, Neill C, Vetter T, Chaves J, Krusche AV, Elsenbeer H (2009) Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia. J Hydrol 364(3–4):349–363. https://doi.org/10.1016/j.jhydrol.2008.11.013

    Article  Google Scholar 

  • González E, Felipe-Lucia MR, Bourgeois B, Boz B, Nilsson C, Palmer G, Sher AA (2017) Integrative conservation of riparian zones. Biol Conserv 211(B):20–29. https://doi.org/10.1016/j.biocon.2016.10.035

    Article  Google Scholar 

  • Gorenflo LJ, Warner DB (2016) Integrating biodiversity conservation and water development: in search of long-term solutions. WIRES Water 3(3):301–311. https://doi.org/10.1002/wat2.1142

    Article  Google Scholar 

  • Goudie AS (2018) Human impact on the natural environment: past, present and future, 8th edn. University of Oxford, United Kingdom, John Wiley and Sons Ltda

    Google Scholar 

  • Guiry MD, Guiry GM (2018) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway Website accessed on [2018/07/18]. http://www.algaebase.org

    Google Scholar 

  • IBGE (2018. Instituto Brasileiro de Geografia e Estatística. Produção da Pecuária Municipal. Website accessed on [2019/11/20]. https://cidades.ibge.gov.br/brasil/pa/obidos/pesquisa/18/16459

  • IBGE (2019) População estimada. Diretoria de Pesquisas, Coordenação de População e Indicadores Sociais, Estimativas da população residente com data de referência 1° de julho de 2019. Website accessed on [2019/11/20]

  • Ismail AH, Adnan AAM (2016) Zooplankton composition and abundance as indicators of eutrophication in two small man-made lakes. Trop Life Sci Res 27(1):31–38. https://doi.org/10.21315/tlsr2016.27.3.5

    Article  Google Scholar 

  • Jakubowska N, Zagajewski P, Gołdyn R (2013) Water blooms and cyanobacterial toxins in lakes. Pol J Environ Stud 22(4):1077–1082

    CAS  Google Scholar 

  • Jenny JP, Francus P, Normandeau A, Lapointe F, Perga ME, Ojala A, Schimmelmann A, Zolitschka B (2016) Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Chang Biol 22(4):1481–1489. https://doi.org/10.1111/gcb.13193

    Article  Google Scholar 

  • Jeronimo CE d M, Souza FRR (2013) Determinação do índice de qualidade da água da lagoa de Extremoz, RN: Série temporal e correlação a índices pluviométricos. REGET/UFSM 10(10):2219–2232. https://doi.org/10.5902/223611707888

    Article  Google Scholar 

  • Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Hydrobiologia 109(3):445–454

    CAS  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Canadian special publication of fisheries and aquatic sciences 106(1):110–127

  • Junk WJ, Wantzen KM (2004) The flood pulse concept: new aspects, approaches and applications - an update. In: Welcomme RL, Petr T (eds) Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries. Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific, Bangkok, pp 117–149

    Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Wittmann F (2012) A classification of major natural habitats of Amazonian white-water river floodplains (várzeas). Wetl Ecol Manag 20(6):461–475. https://doi.org/10.1007/s11273-012-9268-0

    Article  Google Scholar 

  • Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchik L, Schöngart J, Schaeffer-Novelli Y, Agostinho AA (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv Mar Freshwat Ecosyst 24(1):5–22. https://doi.org/10.1002/aqc.2386

    Article  Google Scholar 

  • Kondolf GM, Pinto PJ (2017) The social connectivity of urban rivers. Geomorphology 277:182–196. https://doi.org/10.1016/j.geomorph.2016.09.028

    Article  Google Scholar 

  • Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasser flora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1988) Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/2. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae, 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae, 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1–4. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Lange-Bertalot H (1995) Taxonomy. Iconographia Diatomologica vol. 1. Koeltz Scientific Books

  • Lange-Bertalot H (1996a) Ecology-Diversity-Taxonomy. Iconographia Diatomologica vol. 2. Koeltz Scientific Books

  • Lange-Bertalot H (1996b) Taxonomy. Iconographia Diatomologica vol. 3. Koeltz Scientific Books

  • Lange-Bertalot H (1996c) Taxonomy. Iconographia Diatomologica vol. 4. Koeltz Scientific Books

  • Lange-Bertalot H (1998) Tropical diatoms of South America I. Iconographia Diatomologica vol. 5. Koeltz Scientific Books, Ganther Verlang

  • Lange-Bertalot H (1999) Zur revision der Gattung Gomphonema. Iconographia Diatomologica vol. 8. Koeltz Scientific Books, Ganther Verlang

  • Lange-Bertalot H (2000) Diatomeen der Anden von Venezuela bis Patagonien/Tierra del Fuego. Iconographia Diatomologica vol. 9. Koeltz Scientific Books, Ganther Verlang

  • Lange-Bertalot H (2001) Diatoms of Europe, vol 2. Koeltz Scientific Books, Ganther Verlang

    Google Scholar 

  • Lange-Bertalot H (2002) Diatoms of Europe, vol 3. Koeltz Scientific Books, Ganther Verlang

    Google Scholar 

  • Lavoie I, Campeau S, Fallu MA, Dillon PJ (2006) Diatoms and biomonitoring: should cell size be accounted for? Hydrobiologia 573(1):1–16. https://doi.org/10.1007/s10750-006-0223-z

    Article  CAS  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69(1):1–24. https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2

    Article  Google Scholar 

  • Lenoir A, Coste M (1996) Development of a practical diatom index of overall water quality applicable to the French national water board network. In: Whitton BA, Rott E (eds) Use of algae for monitoring rivers II. Institut fur Botanik. Univ Innsbruck, Innsbruck, pp 29–43

    Google Scholar 

  • Lobo EA, Wetzel CE, Ector L, Katoh K, Blanco S, Mayama S (2010) Response of epilithic diatom community to environmental gradients in subtropical temperate Brazilian rivers. Limnetica 29(2):323–340. https://doi.org/10.23818/limn.29.27

    Article  Google Scholar 

  • Lobo EA, Wetzel CE, Schuch M, Ector L (2014) Diatomáceas epilíticas como indicadores da qualidade da água em sistemas lóticos subtropicais e temperados brasileiros. Santa Cruz do Sul, EDUNISC

    Google Scholar 

  • Lobo EA, Schuch M, Heinrich CG, Costa AB, Düpont A, Wetzel CE, Ector L (2015) Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems. Environ Monit Assess 187(6):1–13. https://doi.org/10.1007/s10661-015-4586-3

    Article  CAS  Google Scholar 

  • Lobo EA, Heinrich CD, Schuch M, Düpont A, Costa AB, Wetzel CE, Ector L (2016a) Índice trófico da qualidade da água: Guia ilustrado para sistemas lóticos subtropicais e temperados brasileiros. EDUNISC E-Book, Santa Cruz do Sul www.unisc.br/edunisc

    Google Scholar 

  • Lobo EA, Heinrich CD, Schuch M, Wetzel CE, Ector L (2016b) Diatoms as bioindicators in rivers. p. 245–271. In: NECCHI Jr (ed) River Algae. Springer International Publishing

  • Lobo MTMPS, Nogueira IS, Sgarbi LF, Kraus CN, Bomfim EO, Garnier J, Marques DM, Bonnet MP (2018) Morphology-based functional groups as the best tool to characterize shallow lake-dwelling phytoplankton on an Amazonian floodplain. Ecol Indic 95:579–588. https://doi.org/10.1016/j.ecolind.2018.07.03

    Article  CAS  Google Scholar 

  • Lobo EA, Freitas NW, Salinas VH (2019) Diatomeas como bioindicadores: Aspectos ecológicos de la respuesta de las algas a la eutrofización en América Latina. Mex J Biotechnol 4(1):1–24. https://doi.org/10.29267/mxjb.2019.4.1.1

    Article  Google Scholar 

  • Lumb A, Sharma TC, Bibeault JF (2011) A review of genesis and evolution of water quality index (WQI) and some future directions. Water Qual Expo Health 3(1):11–24. https://doi.org/10.1007/s12403-011-0040-0

    Article  Google Scholar 

  • Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11(2):143–170. https://doi.org/10.1007/BF00007865

    Article  Google Scholar 

  • Mackereth FJH, Heron J, Talling JF (1989) Water analysis: some revised methods for limnologists, 2nd edn. Freshwater Biological Association Scientific Publication, Ambleside. https://doi.org/10.1002/iroh.19790640404

    Book  Google Scholar 

  • Magesh NS, Krishnakumar S, Chandrasekar N, Soundranayagam JP (2013) Groundwater quality assessment using WQI and GIS techniques, Dindigul district, Tamil Nadu, India. Arab J Geosci 6(11):4179–4189. https://doi.org/10.1007/s12517-012-0673-8

    Article  CAS  Google Scholar 

  • Malherbe W, Mahlangu S, Ferreira M, Wepener V (2015) Fish and macroinvertebrate community composition of a floodplain wetland associated with the Harts River, South Africa, in relation to water quality and habitat parameters. J Afr J Aquat Sci 40(3):311–317. https://doi.org/10.2989/16085914.2015.1076715

    Article  Google Scholar 

  • Maurice-Bourgoin L, Bonnet MP, Martinez JM, Kosuth P, Cochonneau G, Moreira-Turcq P, Guyot JL, Vauchel P, Filizola N, Seyler P (2007) Temporal dynamics of water and sediment exchanges between the Curuaí floodplain and the Amazon River, Brazil. J Hydrol 335(1–2):140–156. https://doi.org/10.1016/j.jhydrol.2006.11.023

    Article  Google Scholar 

  • Mcardle BH, Anderson MJ (2013) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1):290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2

    Article  Google Scholar 

  • McGrath DG, Almeida OT, Merry FD (2007) The influence of community management agreements on household economic strategies: cattle grazing and fishing agreements on the lower Amazon floodplain. Int J Commons 1(1):67–88. https://doi.org/10.18352/ijc.54

    Article  Google Scholar 

  • Meerhoff M, Jeppesen E (2010) Shallow lakes and ponds. In: Likens GE (ed) Lake ecosystem ecology, 1st. Academic Press, San Diego, pp 343–375

    Google Scholar 

  • Melack JM, Novo EMLM, Forsberg BR, Piedade MTF, Maurice L (2009) Floodplain ecosystem processes. Amazonia and Global Change 186:525–542

    Article  CAS  Google Scholar 

  • Metzeltin D, Lange-Bertalot H (1998) Tropical diatoms of the South America I. Iconographia Diatomologica vol. 5. A.R.G. Gantner Verlag K.G. Koenigstein

  • Metzeltin D, Lange-Bertalot H (2002) Diatoms from the “island continent” Madagascar. Iconographia Diatomologica vol. 11. A.R.G. Gantner Verlag K.G. Koenigstein

  • Metzeltin D, Lange-Bertalot H (2007) Tropical diatoms of the South America II. Iconographia Diatomologica vol. 18. A.R.G. Gantner Verlag K.G. Koenigstein

  • Miller JK, Farr SD (1971) Bimultivariate redundancy: a comprehensive measure of interbattery relationship. Multivar Behav Res 6(3):313–324. https://doi.org/10.1207/s15327906mbr0603_4

    Article  Google Scholar 

  • Montoya-Moreno Y, Aguirre-Ramírez N (2013) Knowledge to ecological preferences in a tropical epiphytic algae to use with eutrophication indicators. J Environ Prot 4(11):27–35. https://doi.org/10.4236/jep.2013.411A1004

    Article  CAS  Google Scholar 

  • Moore DRJ (1998) Ambient water quality criteria for organic carbon in British Columbia. Province of British Columbia. Ministry of Environment, Lands and Parks. Victoria. Website accessed on [2018/05/03]. http://www.env.gov.bc.ca/wat/wq/BCguidelines/orgcarbon/index.html

  • Moreira-Filho H, Valente-Moreira IM (1981) Avaliação taxonômica e ecológica das diatomáceas (Bacillariophyceae) epífitas em algas pluricelulares obtidas nos litorais dos estados do Paraná, Santa Catarina e São Paulo, Boletim do Museu Botânico Municipal. 47:1–17

  • Moschini-Carlos V (1999) Importância, estrutura e dinâmica da comunidade perifítica nos ecossistemas aquáticos continentais. In: Pompêo MLM (ed) Perspectivas na Limnologia do Brasil. Editora União, São Luís, pp 91–103

    Google Scholar 

  • Neill C, Deegan LA, Thomas SM, Cerri CC (2001) Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecol Appl 11(6):1817–1828. https://doi.org/10.1890/1051-0761(2001)011[1817:DFPANA]2.0.CO;2

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara RB, Stevens MHH (2007) Vegan: community ecology package. R Package version 1.8–8

  • Opperman JJ, Moyle PB, Larsen EW, Florsheim JL, Manfree AD (2017) Floodplains: processes and management for ecosystem services. 1st edn, California

  • Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1):1–19. https://doi.org/10.1007/s10750-008-9645-0

    Article  Google Scholar 

  • Patrick RM, Reimer CW (1975) The diatoms of the United States, exclusive of Alaska and Hawaii. vol. 2. Monographs of the Academy of Natural Sciences of Philadelphia 13

  • Perbiche-Neves G, Fileto C, Laço-Portinho J, Troguer A, Serafim-Júnior M (2017) Relations among planktonic rotifers, cyclopoid copepods, and water quality in two Brazilian reservoirs. Lat Am J Aquat Res 41(1):138–149. https://doi.org/10.3856/vol41-issue1-fulltext-11

    Article  Google Scholar 

  • Peres LGM, Gurgel H, Laques, A.E., 2018. Dinâmica da paisagem em planícies de inundação amazônicas: o caso do Lago Grande do Curuai, Pará, Brasil Confins Revue franco-brésilienne de géographie/Revista franco-brasilera de geografia 35. https://doi.org/10.4000/confins.13010

  • Peresin D, Torgan LC, Schulz UH, Crossetti LO (2014) Structure of potamoplankton along a gradient of preservation of riparian vegetation in subtropical streams. An Acad Bras Cienc 86(2):841–853. https://doi.org/10.1590/0001-3765201420130318

    Article  CAS  Google Scholar 

  • Pettit NE, Warfe DM, Close PG, Pusey BJ, Dobbs R, Davies C, Valdez D, Davies PM (2016) Carbon sources for aquatic food webs of riverine and lacustrine tropical waterholes with variable groundwater influence. Mar Freshw Res 68(3):442–445. https://doi.org/10.1071/MF15365

    Article  CAS  Google Scholar 

  • Pham TL (2017) Comparison between Water Quality Index (WQI) and biological indices, based on planktonic diatom for water quality assessment in the Dong Nai River, Vietnam. Pollution 3(2):311–323. https://doi.org/10.7508/PJ.2017.02.012

    Article  CAS  Google Scholar 

  • Phillips MJ, Swift LW, Blinn CR (2000) Best management practices for riparian areas. In: Verry ES, Hornbeck JW, Dolloff C (eds) Riparian management in forests of the continental Eastern United States. Lewis Publishers, CRC Press LLC, Boca Raton, pp 273–286

    Google Scholar 

  • Pinel SS, Bonnet MP, Da Silva JS, Cavalcanti Sr, R, Calmant S (2016) Hydrodynamics simulation of Amazonian seasonally flooded wetlands [abstract #H31B-1357]. In: AGU Fall Meeting. San Francisco, California

  • Pinto BV (2006) Características químicas e físico-químicas de águas subterrâneas do Estado do Rio de Janeiro. Dissertação de Mestrado. Brasil, Departamento de Química, Rio de Janeiro

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Round, F.E., 1993. A review and methods for the use of epilithic diatoms for detecting and monitoring changes in river water quality. Methods for the examination of water and associated materials. HMSO Publications, London

  • Rudorff CM, Melack JM, Bates PD (2014) Flooding dynamics on the lower Amazon floodplain: 1. Hydraulic controls on water elevation, inundation extent, and river-floodplain discharge. Water Resour Res 50(1):619–634. https://doi.org/10.1002/2013WR014091

    Article  Google Scholar 

  • Saari GN, Wang Z, Brooks BW (2018) Revisiting inland hypoxia: diverse exceedances of dissolved oxygen thresholds for freshwater aquatic life. Environ Sci Pollut Res 25(4):3139–3150. https://doi.org/10.1007/s11356-017-8908-6

    Article  CAS  Google Scholar 

  • Sant'Anna CL, Azevedo MTP, Werner VR, Dogo CR, Rios FR, de Carvalho LR (2008) Review of toxic species of cyanobacteria in Brazil. Algol Stud 126(1):251–265. https://doi.org/10.1127/1864-1318/2008/0126-0251

    Article  CAS  Google Scholar 

  • Scheffer M, van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584(1):455–466. https://doi.org/10.1007/s10750-007-0616-7

    Article  CAS  Google Scholar 

  • Schuch M, Oliveira MA, Lobo EA (2015) Spatial response of epilithic diatom communities to downstream nutrient increases. Water Environment Research 87(6):547–558. https://doi.org/10.2175/106143014X14062131178196

    Article  CAS  Google Scholar 

  • Silva MSR, Miranda SAF, Santana GP (2016) Bacia Hidrográfica do Rio Amazonas: Condições de suas águas versos Resolução N 357/CONAMA/2005. Scientia Amazonia 6(2):83–90

    Google Scholar 

  • Simonsen R (1974) The diatom plankton of the Indian Ocean expedition of R.V. Meteor Forschungsergeb. Reihe D-Biol 19:1–66

    Google Scholar 

  • Sioli H (1968) Hydrochemistry and geology in the Brazilian Amazon region. Amazoniana 1(3):267–277

    Google Scholar 

  • Smol JP, Stoermer EF (eds) (2010) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Soares MCS, Huszar VLM, Roland F (2007) Phytoplankton dynamics in two tropical rivers with different degrees of human impact (Southeast Brazil). River Res Appl 23(7):698–714. https://doi.org/10.1002/rra.987

    Article  Google Scholar 

  • Soranno PA, Cheruvelil KS, Wagner T, Webster KE, Bremigan MT (2015) Effects of land use on lake nutrients: the importance of scale, hydrologic connectivity, and region. PLoS One 10(8):1–22. https://doi.org/10.1371/journal.pone.0135454

    Article  CAS  Google Scholar 

  • Starmach K, Wróbel S, Pasternak K (1976) Hydrobiologia. Limnologia, Państwowe Wydawnictwo Naukowe, Warszawa

  • Strome DJ, Miller MC (1978) Photolytic changes in dissolved humic substances. Verhandlungen. Int Ver Theor Angew Limnol 20(2):1248–1254. https://doi.org/10.1080/03680770.1977.11896681

    Article  Google Scholar 

  • Sutadian AD, Muttil N, Yilmaz AG, Perera BJC (2016) Development of river water quality indices—a review. Environmental monitoring and assessment 188(1):58

  • Szulc B (2009) Okrzemki bentosowe w ocenie jakości wody środkowego odcinka rzeki Pilicy. PhD Thesis, University of Łódź, Łódź, Poland

  • Szulc B, Szulc K (2013) The use of the biological diatom index (BDI) for the assessment of water quality in the Pilica River, Poland. Oceanol Hydrobiol Stud 42(2):188–194. https://doi.org/10.2478/s13545-013-0073-z

    Article  CAS  Google Scholar 

  • Uhelinger V (1964) Étude statistique des methodes de dénombrement planctonique. Arch Sci 17(2):121–123

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen phytoplankton – methodic. Int Ver Theor Angew Limnol: Mitt 9(1):1–38

    Google Scholar 

  • Verhoeven JT, Arheimer B, Yin C, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends Ecol Evol 21(2):96–103. https://doi.org/10.1016/j.tree.2005.11.015

    Article  Google Scholar 

  • Viaroli P, Bartoli M, Vymazal J (2016) Preface: wetlands biodiversity and processes—tools for conservation and management. Hydrobiologia 774(1):1–5. https://doi.org/10.1007/s10750-016-2793-8

    Article  Google Scholar 

  • Villa-Achupallas M, Rosado D, Aguilar S, Galindo-Riaño MD (2018) Water quality in the tropical Andes hotspot: the Yacuambi river (southeastern Ecuador). Sci Total Environ 633:50–58. https://doi.org/10.1016/j.scitotenv.2018.03.165

    Article  CAS  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green PA, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Article  CAS  Google Scholar 

  • Voulvoulis N, Arpon KD, Giakoumis T (2017) The EU water framework directive: from great expectations to problems with implementation. Sci Total Environ 575:358–366. https://doi.org/10.1016/j.scitotenv.2016.09.228

    Article  CAS  Google Scholar 

  • Wang YK, Stevenson RJ, Metzmeier L (2005) Development and evaluation of a diatom-based index of biotic integrity for the Interior Plateau Ecoregion, USA. J N Am Benthol Soc 24(4):990–1008

    Article  Google Scholar 

  • Wetzel CE, Ector L (2015) Taxonomy and ecology of Fragilaria microvaucheriae sp. nov. and comparison with the type materials of F. uliginosa and F. vaucheriae. Cryptogam Algol 36(3):271–289. https://doi.org/10.7872/crya/v36.iss3.2015.271

    Article  Google Scholar 

  • Zheng H, Li Y, Robinson BE, Liu G, Ma D, Wang F, Lu F, Ouyang Z, Daily GC (2016) Using ecosystem service trade-offs to inform water conservation policies and management practices. Front Ecol Environ 14(10):527–532. https://doi.org/10.1002/fee.1432

    Article  Google Scholar 

Download references

Acknowledgments

M.T.M.P.S.L. received scholarships from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). C.N.K. received scholarships from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). This research was done under the auspices of CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), IRD (Institut de Recherche pour le Développement, grant number 490634/2013-3), and LMI OCE (Laboratoire Mixte International ‘Observatoire des Changements Environnementaux’) and of two research programs, Clim-FABIAM, which was funded by FRB (Fondation pour la Recherche sur la Biodiversité), and Bloom-ALERT, which was funded by the GUYAMAZON program (IRD/CIRAD/Ambassade de France/FAPEAM).

Funding

The paper received funding from the European Union’s Horizon 2020 Research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 691053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Tereza Morais Pereira Souza Lobo.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobo, M.T.M.P.S., Scalize, P.S., Kraus, C.N. et al. Biological index based on epiphytic diatom assemblages is more restrictive than the physicochemical index in water assessment on an Amazon floodplain, Brazil. Environ Sci Pollut Res 27, 10642–10657 (2020). https://doi.org/10.1007/s11356-020-07658-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07658-y

Keywords

Navigation