Skip to main content
Log in

Inland harmful cyanobacterial bloom prediction in the eutrophic Tri An Reservoir using satellite band ratio and machine learning approaches

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In recent years, Tri An, a drinking water reservoir for millions of people in southern Vietnam, has been affected by harmful cyanobacterial blooms (HCBs), raising concerns about public health. It is, therefore, crucial to gain insights into the outbreak mechanism of HCBs and understand the spatiotemporal variations of chlorophyll-a (Chl-a) in this highly turbid and productive water. This study aims to evaluate the predictable performance of both approaches using satellite band ratio and machine learning for Chl-a concentration retrieval—a proxy of HCBs. The monthly water quality samples collected from 2016 to 2018 and 23 cloud free Sentinel-2A/B scenes were used to develop Chl-a retrieval models. For the band ratio approach, a strong linear relationship with in situ Chl-a was found for two-band algorithm of Green-NIR. The band ratio-based model accounts for 72% of variation in Chl-a concentration from 2016 to 2018 datasets with an RMSE of 5.95 μg/L. For the machine learning approach, Gaussian process regression (GPR) yielded superior results for Chl-a prediction from water quality parameters with the values of 0.79 (R2) and 3.06 μg/L (RMSE). Among various climatic parameters, a high correlation (R2 = 0.54) between the monthly total precipitation and Chl-a concentration was found. Our analysis also found nitrogen-rich water and TSS in the rainy season as the driving factors of observed HCBs in the eutrophic Tri An Reservoir (TAR), which offer important solutions to the management of HCBs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

Download references

Acknowledgments

We thank the editor and anonymous reviewers for their constructive comments, which helped us to improve the manuscript. We also thank to Ms. Nguyen Hong Van who provided us valuable climatic data.

Funding

This study was funded by Vietnam Academy of Science and Technology (VAST) under grant number “KHCBSS.02/19-21”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Luu Pham.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, HQ., Ha, NT. & Pham, TL. Inland harmful cyanobacterial bloom prediction in the eutrophic Tri An Reservoir using satellite band ratio and machine learning approaches. Environ Sci Pollut Res 27, 9135–9151 (2020). https://doi.org/10.1007/s11356-019-07519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07519-3

Keywords

Navigation