Skip to main content
Log in

Depollution of mining effluents: innovative mobilization of plant resources

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Based on the ability of some specific aquatic plants to concentrate metals in their roots, we propose an innovative biosorption system to clean up mining effluents. The system we propose represents an interesting solution to an important environmental problem, the decontamination of metal-polluted water and prevention of dispersal of metals into the environment. The solution presented is a form of ecological recycling of Zn, an essential primary metal in many industrial applications. Finally, the methodology developed is a sustainable way of managing the biomass from eradication or control of invasive plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blottiere D (2017) http://www.gt-ibma.eu/wp-content/uploads/2018/07/16072018_comprendre-pour-agir_eee_experiences-de-gestion_vol3_vf.pdf, 76

  • Cisneros J, Oki T, Arnell NW, Benito G, Cogley JG, Döll P, Jiang T, Mwakalila SS (2014) Freshwater resources. In: Climate change 2014: impacts, adaptation and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 3 (Freshwater Resources), 229–269

  • Clavé G, Pelissier F, Campadelli S, Grison C (2017) Ecocatalyzed Suzuki-Miyaura cross coupling of heteroaryl compounds. Green Chem 19:4093–4103

    Article  Google Scholar 

  • Crimmins A, Balbus J, Gamble JL, Beard CB, Bell JE, Dodgen D, Eisen RJ. Fann N, Hawkins MD, Herring SC, Jantarasami L, Mills DM, Saha S, Sarofim MC, Trtanj J, Ziska L (2016) The impacts of climate change on human health in the United States: a scientific assessment. , Eds. U.S. Global Change Research Program, Washington, DC, 312

  • Decision No 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC Official Journal L 331, 2001, 0001–0005

  • Deyris PA, Grison C (2018) Nature, ecology and chemistry: an unusual combination for a new green catalysis, ecocatalysis. Curr Opin Green Sustain Chem 10:6–10

    Article  Google Scholar 

  • Deyris PA, Petit E, Legrand YM, Diliberto S, Boulanger C, Bert V, Grison C (2018) Biosourced polymetallic catalysis: a surprising and efficient means to promote the Knoevenagel condensation. Front Chem 6:48. https://doi.org/10.3389/fchem.2018.00048

    Article  CAS  Google Scholar 

  • Escande V, Garoux L, Grison CM, Thillier Y, Debart F, Vasseur JJ, Boulanger C, Grison C (2013) Ecological catalysis and phytoextraction: symbiosis for future. Appl Catal B 146:1–298

    Google Scholar 

  • Escande V, Petit E, Olszewski T, Grison C (2014a) Zn biosourced catalysts: an efficient way for the synthesis of under-exploited platform molecules from carbohydrates. ChemSusChem 7(7):1915–1923

    Article  CAS  Google Scholar 

  • Escande V, Olszewski T, Grison C (2014b) Preparation of ecological catalysts derived from Zn hyperaccumulating plants and their catalytic activity in Diels-Alder reaction. Comptes-Rendus de l’Académie des Sciences, article sur invitation 17:731–737

  • Escande V, Olszewski T, Grison C (2015a) From biodiversity to catalytic diversity: how to control the reaction mechanism by the nature of metallophytes. Environ Sci Pollut Res 22:5653–5666

    Article  CAS  Google Scholar 

  • Escande V, Velati A, Grison C (2015b) Ecocatalysis for 2H-chromenes synthesis: an integrated approach for phytomanagement of polluted ecosystems. Environ Sci Pollut Res 22:5677–5685

    Article  CAS  Google Scholar 

  • Escande V, Velati A, Garel C, Renard BL, Petit E, Grison C, Phytoextracted mining wastes for Ecocatalysis (2015c) Eco-Mn®, an efficient and eco-friendly plant-based catalyst for reductive amination of ketones. Green Chem 17:2188–2199

    Article  CAS  Google Scholar 

  • Escande V, Petit E, Garoux L, Boulanger C, Grison C (2015d) Switchable alkene epoxidation/oxidative cleavage with H2O2-NaHCO3: efficient heterogeneous catalysis derived from biosourced eco-Mn. ACS Sustain Chem Eng 3(11):2704–2715

    Article  CAS  Google Scholar 

  • Escande V, Poullain C, Clavé G, Petit E, Masquelez N, Hesemann P, Grison C (2017) Alternative green and ecological input for transfer hydrogenation using EcoNi(0) catalyst in isopropanol. Applied Catalysis B. 210:495–503

    Article  CAS  Google Scholar 

  • Ezbakhe F (2018) Addressing Water Pollution as a means to achieving the sustainable development goals. J Water Pollut Control 2018 1(1):6

    Google Scholar 

  • Grison C (2015) Combining phytoextraction and ecocatalysis: an environmental, ecological, ethic and economic opportunity. Environ Sci Pollut Res 22:5589–5698

    Article  Google Scholar 

  • Grison CM, Mazel M, Sellini A, Escande V, Biton J, Grison C (2015a) The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources. Environ Sci Pollut Res 22:5667–5676

    Article  CAS  Google Scholar 

  • Grison CM, Escande V, Velati A, Grison C (2015b) Metallophytes for organic synthesis: towards new greener selective protection / deprotection procedures. Environ Sci Pollut Res 22:5686–5698

    Article  CAS  Google Scholar 

  • Issanchou A (2012) http://www.gt-ibma.eu/wp-content/uploads/2013/01/Issanchou-Memoire-Economie-Jussie.pdf

  • Kumar K, Yadava K, Guptaa N, Kumarb A, Reecec LM, Singhd N, Rezaniae S, Khanf SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298

    Article  Google Scholar 

  • Lambert E, Dutartre A, Coudreuse J, Haury J (2010) Relationships between the biomass production of invasive Ludwigia species and physical properties of habitats in France. Hydrobiologia 656:173–186

    Article  Google Scholar 

  • Losfeld G, De Vidal L, Blache P, Escande V, L’huillier L, Grison C (2012a) Design and performance of green supported Lewis acid catalysts derived from biomass for Friedel-crafts alkylation and acylation. Catal Today 189(Iss 1):111–116

    Article  CAS  Google Scholar 

  • Losfeld G, Vidal De La Blache P, Escande V, Grison C (2012b) Zinc hyperaccumulating plants as renewable resources for the chlorination of alcohols, Green. Chem Lett Rev:1–6

  • Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, S. N.Luoma; P.S. Rainbow

  • Merdy P, Guillon E, Frapart YM, Aplincourt M (2003) Iron and manganese surface complex formation with extracted lignin. New J Chem 27:577–582

    Article  CAS  Google Scholar 

  • NOR: ATEP9870017A - consolidated version of 14 February 2019, https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=LEGITEXT000005625281

  • Passariello B, Giuliano V, Quaresima S, Barbaro M, Caroli S, Forte G, Carelli G, Iavicoli I (2002) Evaluation of the environmental contamination at an abandoned mining site. Microchem J 73(1–2):245–250

    Article  CAS  Google Scholar 

  • Pitron G (2018) The war of rare metals: the hidden side of the green energy and digital transition, Ed. LLI

  • Saunier JB, Losfeld G, Freydier R, Grison C (2013) Trace elements biomonitoring in a historical mining district (les Malines, France). Chemosphere 93(9):2016–2023

    Article  CAS  Google Scholar 

  • Thillier Y, Losfeld G, Escande V, Dupouy C, Vasseur J-J, Debart F, Grison C (2013) Solid-phase synthesis of 5′-capped RNA with polymetallic catalysts prepared from metallophytes species. RCS Advances 3(15):5204–5212

    CAS  Google Scholar 

  • Vila M, Basnou C, Gollasch S, Josefsonn M (2009) One hundred of the most invasive alien species in Europe. In DAISIE handbook of alien species in Europe, 3, 269–374. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-8280-1_13

  • Yfantis N, Yfantis A, Giannakakis G, Gaze V (2018) Evaluation of a pilot plant for a secondary treatment of mining effluents. Desalin Water Treat 127:184–196. https://doi.org/10.5004/dwt.2018.23232

    Article  CAS  Google Scholar 

  • Zuryak R, Sukkariyah B, Baalbaki R, Ghanem DA (2002) Ni phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water Air Soil Pollut 139:355–364

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge financial support from the Centre National de la Recherche Scientifique (CNRS), FEDER- UNION EUROPEENNE- Région Occitanie, Klorane Botanical Foundation (KBF), Suez Foundation, Compagnie Nationale du Rhône (CNR), and Alain Canales (Syndicat Mixte Ganges le Vigan) for the crops of Fallopia japonica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Grison.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanovych, A., Balloy, M., Olszewski, T.K. et al. Depollution of mining effluents: innovative mobilization of plant resources. Environ Sci Pollut Res 26, 19327–19334 (2019). https://doi.org/10.1007/s11356-019-05027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05027-y

Keywords

Navigation