Skip to main content
Log in

Efficient removal of copper ions using a hydrogel bead triggered by the cationic hectorite clay and anionic sodium alginate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sodium alginate (SA) is a linear biopolymer, which is the nontoxic, biodegradable, and rich in carboxyl and hydroxyl groups. In the paper, the SA-based hydrogel bead was prepared by the cationic hectorite clay and anionic sodium alginate with a simple ionic gelation method under freeze-drying, and the adsorption properties were evaluated by the removal of copper ions from aqueous solutions. The composites were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherm (BET), thermal analysis (TG), and Fourier transform infrared spectroscopy (FT-IR). The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data and the Langmuir, Freundlich, Dubinin–Radushkevich (D-R), and Temkin models were applied to describe the adsorption isotherms. The results showed that the adsorption process was found to follow the Freundlich isotherm model and the maximum sorption capacity was observed to be 160.28 mg/g under the initial concentration from 10 to 700 mg/L at 45 °C. Adsorption kinetics data fitted well with pseudo-second-order rate model. The porous structure of the composite was responsible for the adsorption of Cu2+ ions. But the adsorption ability could be improved by pH. Finally, the adsorption mechanism was suggested.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acero JL, Benitez FJ, Real FJ, Teva F (2016) Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes. Chem Eng J 289:48–58

    Article  CAS  Google Scholar 

  • Barati A, Asgari M, Miri T, Eskandari Z (2013) Removal and recovery of copper and nickel ions from aqueous solution by poly(methacrylamide-co-acrylic acid)/montmorillonite nanocomposites. Environ Sci Pollut Res 20:6242–6255

    Article  CAS  Google Scholar 

  • Barreca S, Orecchio S, Pace A (2014) The effect of montmorillonite clay in alginate gel beads for polychlorinated biphenyl adsorption: isothermal and kinetic studies. Appl Clay Sci 99:220–228

    Article  CAS  Google Scholar 

  • Bouhamed F, Elouear Z, Bouzid J, Ouddane B (2016) Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Environ Sci Pollut Res 23:15801–15806

    Article  CAS  Google Scholar 

  • Cho DW, Jeon BH, Chon CM, Kim Y, Schwartz FW, Lee ES, Song H (2012) A novel chitosan/clay/magnetite composite for adsorption of Cu(II) and As(V). Chem Eng J 200-202:654–662

    Article  CAS  Google Scholar 

  • Delavernhe L, Pilavtepe M, Emmerich K (2018) Cation exchange capacity of natural and synthetic hectorite. Appl Clay Sci 151:175–180

    Article  CAS  Google Scholar 

  • Fan NQ, Fan YX, Tong DS, Zhou CH, Ge ZH (2010) Study on structure characteristics of organic hectorite hydrothermally synthesized in reaction medium with the presence of surfactants. J Chem Eng Chin Univ 24:852–857

    CAS  Google Scholar 

  • Fu W, Huang ZQ (2018) Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu(II), Cd(II), Pb(II), and Hg(II) ions from aqueous solution: synthesis, adsorption, and regeneration. Chemosphere 209:449–456

    Article  CAS  Google Scholar 

  • Ghasemi M, Keshtkar AR, Dabbagh R, Safdari SJ (2011) Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling. J Hazard Mater 189:141–149

    Article  CAS  Google Scholar 

  • Guemiza K, Coudert L, Metahni S, Mercier G, Besner S, Blais JF (2017) Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: a review. J Hazard Mater 333:194–214

    Article  CAS  Google Scholar 

  • Guo YX, Jia ZQ (2018) Sandwiched Zr (IV)-based coordinate porous materials membranes for adsorption of copper(II) from water. Mater Lett 228:239–241

    Article  CAS  Google Scholar 

  • Guo XY, Zhang SZ, Shan XQ (2008) Adsorption of metal ions on lignin. J Hazard Mater 151:134–142

    Article  CAS  Google Scholar 

  • Hu C, Zhu PF, Cai M, Hu HQ, Fu QL (2017) Comparative adsorption of Pb(II), Cu(II) and Cd(II) on chitosan saturated montmorillonite: kinetic, thermodynamic and equilibrium studies. Appl Clay Sci 143:320–326

    Article  CAS  Google Scholar 

  • Jalali MA, Koohi AD, Sheykhan M (2016) Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: kinetic and equilibrium study. Carbohydr Polym 142:124–132

    Article  CAS  Google Scholar 

  • Jaycock MJ, Parfitt GD (1981) Chemistry of interfaces

    Google Scholar 

  • Kamaraj R, Pandiarajan A, Jayakiruba S, Naushad M, Vasudevan S (2016) Kinetics, thermodynamics and isotherm modeling for removal of nitrate from liquids by facile one-pot electrosynthesized nano zinc hydroxide. J Mol Liq 215:204–211

    Article  CAS  Google Scholar 

  • Karthik R, Meenakshi S (2015) Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int J Biol Macromol 72:711–717

    Article  CAS  Google Scholar 

  • Kousalya GN, Gandhi MR, Viswanathan N, Meenakshi S (2010) Preparation and metal uptake studies of modified forms of chitin. Int J Biol Macromol 47:583–589

    Article  CAS  Google Scholar 

  • Li J, Zuo KM, Wu WB, Xu ZY, Yi YG, Jing Y, Dai HQ, Fangc GG (2018) Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydr Polym 196:376–384

    Article  CAS  Google Scholar 

  • Luo C, Wei RY, Guo D, Zhang SF, Yan SQ (2013) Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chem Eng J 225:406–415

    Article  CAS  Google Scholar 

  • Ma J, Jia YZ, Jing Y, Yao Y, Sun JH (2012) Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite. Dyes Pigments 93:1441–1446

    Article  CAS  Google Scholar 

  • Madejova J, Komadel P (2001) Baseline studies of the clay minerals society source clays: infrared methods. Clay Clay Miner 49:410–432

    Article  CAS  Google Scholar 

  • Mejia GV, Martinez-Miranda V, Fall C, Linares-Hernandez I, Solache-Rios M (2016) Comparison of Fe-Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F- and As(V). Environ Technol 37:558–568

    Article  CAS  Google Scholar 

  • Mittal H, Parashar V, Mishra SB, Mishra AK (2014) Fe3O4 MNPs and gum xanthan based hydrogels nanocomposites for the efficient capture of malachite green from aqueous solution. Chem Eng J 255:471–482

    Article  CAS  Google Scholar 

  • Ngah WSW, Fatinathan S (2008) Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chem Eng J 143:62–72

    Article  CAS  Google Scholar 

  • Oh JM, Biswick TT, Choy JH (2009) Layered nanomaterials for green materials. J Mater Chem 19:2553–2563

    Article  CAS  Google Scholar 

  • Pandey S, Mishra SB (2012) Microwave synthesized xanthan gum-g-poly(ethylacrylate): an efficient Pb2+ ion binder. Carbohydr Polym 90:370–379

    Article  CAS  Google Scholar 

  • Pawar RR, Patel HA, Sethia G, Bajaj HC (2009) Selective adsorption of carbon dioxide over nitrogen on calcined synthetic hectorites with tailor-made porosity. Appl Clay Sci 46:109–113

    Article  CAS  Google Scholar 

  • Rengaraj S, Yeon JW, Kim Y, Jung Y, Ha YK, Kim WH (2007) Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: kinetics, isotherms and error analysis. J Hazard Mater 143:469–477

    Article  CAS  Google Scholar 

  • Sahu UK, Sahu S, Mahapatra SS, Patel RK (2017) Cigarette soot activated carbon modified with Fe3O4 nanoparticles as an effective adsorbent for As(III) and As(V): material preparation, characterization and adsorption mechanism study. J Mol Liq 243:395–405

    Article  CAS  Google Scholar 

  • Shahraki S, Delarami HS (2018) Magnetic chitosan-(D-glucosimine methyl)benzaldehyde Schiff base for Pb+2 ion removal. Experimental and theoretical methods. Carbohydr Polym 200:211–220

    Article  CAS  Google Scholar 

  • Sun L, Fugetsu B (2014) Graphene oxide captured for green use: influence on the structures of calcium alginate and macroporous alginic beads and their application to aqueous removal of acridine orange. Chem Eng J 240:565–573

    Article  CAS  Google Scholar 

  • Tsai WC, Ibarra-Buscano S, Kan CC, Futalan CM, Dalida MLP, Wan MW (2016) Removal of copper, nickel, lead, and zinc using chitosan-coated montmorillonite beads in single- and multi-metal system. Desalin Water Treat 57:9799–9812

    Article  CAS  Google Scholar 

  • Vicente I, Salagre P, Cesteros Y, Guirado F, Medina F, Sueiras JE (2009) Fast microwave synthesis of hectorite. Appl Clay Sci 43:103–107

    Article  CAS  Google Scholar 

  • Wang YZ, Wang WB, Shi XN, Wang AQ (2013a) A superabsorbent nanocomposite based on sodium alginate and illite/smectite mixed-layer clay. J Appl Polym Sci 130:161–167

    Article  CAS  Google Scholar 

  • Wang YZ, Wang WB, Wang AQ (2013b) Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chem Eng J 228:132–139

    Article  CAS  Google Scholar 

  • Xu J, Cao Z, Zhang YL, Yuan ZL, Lou ZM, Xu XH, Wang XK (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195:351–364

    Article  CAS  Google Scholar 

  • Yi XF, He JR, Guo YY, Han ZH, Yang MX, Jin JL, Gu JJ, Ou MR, Xu XP (2018) Encapsulating Fe3O4 into calcium alginate coated chitosan hydrochloride hydrogel beads for removal of Cu (II) and U (VI) from aqueous solutions. Ecotoxicol Environ Saf 147:699–707

    Article  CAS  Google Scholar 

  • Youssef AM, Ahmed AI, Amin MI, El-Banna UA (2015) Adsorption of lead by activated carbon developed from rice husk. Desalin Water Treat 54:1694–1707

    CAS  Google Scholar 

  • Zhang D, Zhou CH, Lin CX, Tong DS, Yu WH (2010) Synthesis of clay minerals. Appl Clay Sci 50:1–11

    Article  CAS  Google Scholar 

  • Zhang YJ, Ou JL, Duan ZK, Xing ZJ, Wang Y (2015) Adsorption of Cr(VI) on bamboo bark-based activated carbon in the absence and presence of humic acid. Colloid Surf A Physicochem Eng Asp 481:108–116

    Article  CAS  Google Scholar 

  • Zhang W, Deng Q, He QL, Song JY, Zhang SL, Wang HY, Zhou JP, Zhang HN (2018a) A facile synthesis of core-shell/bead-like poly (vinyl alcohol)/alginate@PAM with good adsorption capacity, high adaptability and stability towards Cu(II) removal. Chem Eng J 351:462–472

    Article  CAS  Google Scholar 

  • Zhang YZ, Lin SC, Qiao JQ, Kolodynska D, Ju YM, Zhang MW, Cai MF, Deng DY, Dionysiou DD (2018b) Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr(VI) and Cu(II) from aqueous solution. Chem Eng J 353:225–236

    Article  CAS  Google Scholar 

  • Zhou CH, Zhang D, Tong DS, Wu LM, Yu WH, Ismadji S (2012) Paper-like composites of cellulose acetate-organo-montmorillonite for removal of hazardous anionic dye in water. Chem Eng J 209:223–234

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the National Natural Scientific Foundation of China (21506188), the Natural Scientific Foundation of Zhejiang Province ZJNSF (LY16B030010), China Postdoctoral Science Foundation (2018 M630688), the project from Science and Technology Department of Wenzhou (G20180017), and Project of Zhejiang″151″ talents project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongshen Tong.

Additional information

Responsible editor: Ioannis A. Katsoyiannis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, D., Fang, K., Yang, H. et al. Efficient removal of copper ions using a hydrogel bead triggered by the cationic hectorite clay and anionic sodium alginate. Environ Sci Pollut Res 26, 16482–16492 (2019). https://doi.org/10.1007/s11356-019-04895-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04895-8

Keywords

Navigation