Skip to main content
Log in

Evaluation of underground hydraulic fracturing using transient electromagnetic method

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The effective area of hydraulic fracturing is the core index to evaluate its effects. Through conducting transient electromagnetic tests, this paper deals with the influential range of the underground hydraulic fracturing as well as water-cut detection and gas extraction in the fracturing area. The resistivity response law of the coal seam in hydraulic fracturing process is explored, and the water-bearing area is determined. The obtained results from the tests show that the water-cut areas of the coal seam, measured by anti-interference transient electromagnetic instrument after fracturing, are commonly placed in the low-resistance area of the transient test. Further, the variations of amplitude of the low-resistance area in various directions of the test line are different. According to the variation law of the apparent resistivity of the coal seam before and after fracturing, the effective influential area of the hydraulic fracturing is defined, and the influence range is evaluated to be 35 m. The water cut and the gas extraction tests of the coal seam before and after fracturing are performed. The results reveal that the growth of water content in the coal seam is inversely proportional to the distance from the hydraulic fracturing borehole. The effective fracturing zone with the increment of the water content reaching 0.2% is the effective fracturing zone, and the effective fracturing zone of #9 and #10 is 38 m. After hydraulic fracturing, the gas extraction concentration would be in the range of 25.4–75.4%, with the average of 70.22%, which is 21.22% higher than that of the original coal body. The net amount of the gas extraction after fracturing is about eight times of that before fracturing. The effective fracturing range, which is determined by transient electromagnetic, is verified successfully. Exploring the effective fracturing regions of the hydraulic fracturing process would be very helpful in improving the evaluation system of the hydraulic fracturing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Chen L, Wang S, He J, Zhang X, Hu Q, Zhang Y (2016) Coalbed methane reservoir heterogeneity and its control effect on gas wells productivity. J China Univ Min Technol 45:105–110

    Google Scholar 

  • Commer M, Newman G (2004) A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources. Geophysics 69(5):1192–1202

    Google Scholar 

  • Estrada JMAR (2016) A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing. Fuel 182:292–303

    Google Scholar 

  • Ezersky M (2011) TEM study of the geoelectrical structure and groundwater salinity of the Nahal Hever sinkhole site, Dead Sea shore, Israel. J Appl Geophys 75(1):99–112

    Google Scholar 

  • Grimm RE, Stillman DE, Dinwiddie CL (2017) On conductive ground: analysis of bistatic sounding of the deep subsurface with ground penetrating radar-experimental validation by V. Ciarletti et al. Planet Space Sci 139:51–56

    Google Scholar 

  • He Q, Suorineni FTM (2017) Effect of discontinuity pressure shadows on hydraulic fracture re-orientation. Int J Rock Mech Min 91:179–194

    Google Scholar 

  • Keydar DS (2010) Application of seismic diffraction imaging for detecting near-surface in homogeneities in the Dead Sea area. J Appl Geophys 71(2):47–52

    Google Scholar 

  • Khan MY, Xue GQ, Chen WY (2018) Analysis of long-offset transient electromagnetic (LOTEM) data in time, frequency, and pseudo-seismic domain. J Environ Eng Geophys 23:15–32

    Google Scholar 

  • Lee S, Memechan GA (1987) The electromagnetic equivalent of seismic migration. Geophysics 52(5):678–693

    Google Scholar 

  • Lee KH, Liu G, Morrison HF (1989) A new approach to modeling the electromagnetic response of conductive media. Geophysics 54(6):1180–1192

    Google Scholar 

  • Li X, Xue GQ, Song JP (2005) Optimization algorithm from transient electromagnetic field to wave field. Geophysics 48(5):1185–1190

    Google Scholar 

  • Li Q, Lin B, Zhai C (2014a) The effect of pulse frequency on the fracture extension during hydraulic fracturing. J Nat Gas Sci Eng 21:296–303

    Google Scholar 

  • Li SC, Sun HF, Lu XS (2014b) Three-dimensional modeling of transient electromagnetic responses of water-bearing structures in front of a tunnel face. J Environ Eng Geophys 19(1):13–32

    Google Scholar 

  • Li Q, Lin B, Zhai C (2015) A new technique for preventing and controlling coal and gas outburst hazard with pulse hydraulic fracturing: a case study in Yuwu coal mine, China. Nat Hazards 75:2931–2946

    Google Scholar 

  • Li SC, Li K, Zhai MH (2016) Analysis of grounded transient electromagnetic with surface-tunnel configuration in mining. J China Coal Soc 41(8):2024–2032

    Google Scholar 

  • Li C, Fu S, Cui Y, Sun X, Xie B, Yang W (2017) Study of the migration rule of high-concentration gas and spatial-temporal feature of gas hazard in the tunnel. J China Univ Min Technol 46:27–32

    Google Scholar 

  • Liu X, Jiao CQ, Yao AF (2015) Orthogonal experiment design of EMI of security monitoring system in coal mines. Int J Coal Sci Technol 2(4):325–332

    Google Scholar 

  • Lu T, Liu SD, Wang B, Wu RX, Hu XW (2017) A review of geophysical exploration technology for mine water disaster in China: applications and trends. Mine Water Environ 36:331–340

    Google Scholar 

  • Oskarsdottir M, Van Calster T, Bart B (2018) Time series for early churn detection: using similarity based classification for dynamic networks. Expert Syst Appl 106:55–65

    Google Scholar 

  • Pellerin (2014) Toward mixed-element meshing based on restricted voronoi diagrams. Procedia Eng 82(1):279–290

    Google Scholar 

  • Qiao W, Li WP, Zhang X (2014) Characteristic of water chemistry and hydrodynamics of deep karst and its influence on deep coal mining. Arab J Geosci 7:1261–1275

    Google Scholar 

  • Schroeder, Barros D, Lima ACS, Afonso, Moura (2018) Evaluation of the impact of different frequency dependent soil models on lightning overvoltages. Electr Power Syst Res 159:40–49

    Google Scholar 

  • Song XG, Jiang Y, Shan XJ, Qu CY (2017) Deriving 3D coseismic deformation field by combining GPS and in SAR data based on the elastic dislocation model. Int J Appl Earth Obs Geoinf 57:104–112

    Google Scholar 

  • Spitzer K, Borner J, Afanasjew M (2011) Borehole transient electromagnetic for monitoring CO2 sequestration in saline aquifers. Solid State Electron 51(4):611–616

    Google Scholar 

  • Strack KM, Seara JL, Gmh G (1990) LOTEM case histories in frontier areas of hydrocarbon exploration in Asia. Seg Exp Abstr 9:495–497

    Google Scholar 

  • Sun HF (2012) Multi-component and multi-array TEM detection in karst tunnels. J Geophys Eng 9:359–373

    Google Scholar 

  • Sun HF (2014) Three-dimensional modeling of transient electromagnetic responses of water-bearing structures in front of a tunnel face. J Environ Eng Geophys 19(1):13–32

    Google Scholar 

  • Tae J, Jung HS, Hee JK (2002) Electromagnetic travel time tomography using approbobility wave-field transform. Geophysics 67(3):67–69

    Google Scholar 

  • Wang Y, Liu X, Tang C (2016) Effect of injection rate on hydraulic fracturing in naturally fractured shale formations: a numerical study. Environ Earth Sci 75:11

    Google Scholar 

  • Xue GQ, Yan YJ, Li X (2007) Pseudo-seismic wavelet transformation of transient electromagnetic response in geophysical exploration. J Geophys Res Lett 34:L16405. https://doi.org/10.1029/2007GL031116

    Google Scholar 

  • Xue GQ, Qin KZ, Li X (2012) Discovery of a large-scale porphyry molybdenum deposit in Tibet through a modified tem exploration method. J Environ Eng Geophys 17(1):19–25

    Google Scholar 

  • Yan LJ, Su ZL, Hu JH (1997) Field trials of LOTEM in a very rugged area. Lead Edge 16(4):379–382

    Google Scholar 

  • Yan C, Zheng H, Sun G (2016) Combined finite-discrete element method for simulation of hydraulic fracturing. 49:1389–1410

  • Yang D, Oldenburg DW (2012) Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit. Geophysics 77(2):B23–B34

    Google Scholar 

  • Yuan L, Qin Y, Chen Y (2013) Prediction of CBM well long-term extraction scale scenario in China. J Coal 04:529–534

    Google Scholar 

  • Zhdanov MS, Traynin PN (1995) Resistivity imaging by time domain electromagnetic migration. Explor Geophys 26:186–194

    Google Scholar 

  • Zou Q, Li Q, Liu T (2017) Peak strength property of the pre-cracked similar material: implications for the application of hydraulic slotting in ECBM. J Nat Gas 37:106–115

    Google Scholar 

Download references

Funding

This work was financially supported by the Graduate Student Research Innovation Project (Project No. CYB17045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Wang.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.27 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X. Evaluation of underground hydraulic fracturing using transient electromagnetic method. Environ Sci Pollut Res 26, 11458–11469 (2019). https://doi.org/10.1007/s11356-019-04539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04539-x

Keywords

Navigation