Skip to main content
Log in

Performance of an aquaponics system using constructed semi-dry wetland with lettuce (Lactuca sativa L.) on treating wastewater of culture of Amazon River shrimp (Macrobrachium amazonicum)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aquaponics is a science that integrates animal aquatic production with vegetable culture in recirculating water systems. The performance of an aquaponics system using constructed semi-dry wetland with lettuce (Lactuca sativa L.) planted on treating wastewater of culture of shrimp Macrobrachium amazonicum was evaluated. Each aquaponics module consisted in four culture tanks (1 m3 tank−1), conical sedimentation tank (0.1 m3), circular holding tank (0.2 m3), and constructed semi-dry wetland (0.2 m × 1.0 m × 4.0 m). Post larvae (PL) shrimps with an initial average mass of 314 ± 4.75 mg were stocked at density treatments in quadruplicate: (A) 40 shrimps m−2, (B) 80 shrimps m−2, and (C) 120 shrimps m−2. Our results showed the average final mass of shrimps had a slight reduction at the density 80 and 120 shrimps. However, it did not differ significantly between the treatments. The ultimate survival and productivity were higher in density 80 and 120 shrimps. The maximum biomass productivity occurred at the treatment with density 120 shrimps. The aquaponics recirculation system using constructed semi-dry wetlands with lettuce adequately treated the water at the densities tested. Various water quality parameters were deemed suitable for shrimp culture, but for lettuce not, especially the temperature. The shrimp density was inappropriate which limited the system to accumulate and increase the concentration of nutrients to vegetables with lessening the yield. Nonetheless, the system with higher density has higher nutrient content that plants demonstrated significantly better growth and yield. The results showed the potential use of organics waste generated in a family lettuce hydroponic production, but for a commercial production is indicated supplementation with nutrients like calcium, magnesium, and potassium in the water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhikari S, Chaurasia VS, Naqvi AA, Pillai BR (2007) Survival and growth of Macrobrachium rosenbergii (De Man) juveniles in relation to calcium hardness and bicarbonate alkalinity. Turk J Fish Aquat Sci 7:23–26

    Google Scholar 

  • Ayres M, Ayres JRM, Ayres DL, Santos AAS (2007) Bioestat: aplicações estatísticas nas áreas das ciências bio-médicas. Belém, Sociedade Civil Mamirauá

  • Carneiro PCF, Morais CAR, Nunes MUC, Maria AN, Fujimoto RY (2015) Produção integrada de peixes e vegetais em aquaponia. Aracaju: Embrapa Tabuleiros Costeiros, 2015a. 23p. (Embrapa Tabuleiros Costeiros. Comunicado Técnico, 189)

  • Castellani D, Camargo AFM, Abimorad EG (2009) Aquaponics: use of the effluent from the secondary nursery of Macrobrachium amazonicum for the production of hydroponic lettuce (Lactuca sativa) and watercress (Rorippa nasturtium aquaticum). Bioikos 23:67–75 (in Portuguese with English abstract)

    Google Scholar 

  • Cerozi BS, Fitzsimmons K (2016) The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresour Technol 219:778–781. https://doi.org/10.1016/j.biortech.2016.08.079

    Article  CAS  Google Scholar 

  • Chen RZ, Wong M-H (2016) Integrated wetlands for food production. Environ Res 148:429–442

  • Damasceno KSFSC, Andrade SAC, Stamford TLM (2009) Utilization of shrimp waste. Boletim do CEPPA 27:213–224 (in Portuguese with English abstract)

    Google Scholar 

  • Dediu L, Cristea V, Xiaoshuan Z (2012) Waste production and valorization in an integrated aquaponic system with bester and lettuce. Afr J Biotechnol 11(9):2349–2358. https://doi.org/10.5897/AJB11.2829

    Article  CAS  Google Scholar 

  • Diver S (2006) Aquaponics—integration of hydroponics with aquaculture. National Sustainable Agriculture Information Service, 28p

  • Dutra FM, Moretto Y, Portz L, Ballester ELC (2016) Pen culture of Macrobrachium amazonicum: use of artificial diet and impact on benthic community. Aquac Res 47:266–275

    Article  Google Scholar 

  • El-Sherif MS, Mervat AM (2009) Effect of rearing systems (mono- and polyculture) on the performance of freshwater prawn (M. rosembergii) juveniles. J Fish Aquat Sci 4:117–128

    Article  Google Scholar 

  • Emerenciano MGC, Gl M, Pinho SM, Molinari D, Blum MN (2015) Aquaponia: uma alternativa de diversificação na aquicultura. Panorama da Aquicultura, Rio de Janeiro, v 25:24–35

    Google Scholar 

  • FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Rome. 200 pp.

  • Geisenhoff LO, Jordan RA, Santos RC, de OFC, Gomes EP (2016) Effect of different substrates in aquaponic lettuce production associated with intensive Tilapia farming with water recirculation systems. Eng Agric 36(2):291–299. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n2p291-299/2016

    Article  Google Scholar 

  • Genuncio GC, Gomes M, Ferrari AC, Majerowicz N, Zonta E (2012) Hydroponic lettuce production in different concentrations and flow rates of nutrient solution. Hortic Bras 30:526–530. https://doi.org/10.1590/S0102-05362012000300028

    Article  Google Scholar 

  • Guimarães IP, Oliveira FA, Torres SB, Pereira FECB, França FD, Oliveira MKT (2016) Use of fish-farming wastewater in lettuce cultivation. Rev Bras Eng Agríc Amb 20(8):728–733. https://doi.org/10.1590/1807-1929/agriambi.v20n8p728-733

    Article  Google Scholar 

  • Henares MNP, Preto B de L, Rosa FRT, Valenti WC, Camargo AFM (2015) Effects of artificial substrate and night-time aeration on the water quality in Macrobrachium amazonicum (Heller 1862) pond culture. Aquac Res 46:618–625. https://doi.org/10.1111/are.12208

    Article  CAS  Google Scholar 

  • Henry-Silva GG, Maia CSP, Moura RST, Bessa AP, Valenti WC (2015) Integrated multi-trophic culture of Nile tilapia (Oreochromis niloticus) and Amazon river prawn (Macrobrachium amazonicum) in brackish water. Arq Bras Med Vet Zootec 67:265–273. https://doi.org/10.1590/1678-6788

    Article  Google Scholar 

  • Hundley GMC, Navarro RD (2013) Aquaponia: a integração entre piscicultura e a hidroponia. Revista Brasileira de Agropecuária Sustentável, Viçosa, v 3:52–61. https://doi.org/10.21206/rbas.v3i2.218

    Article  Google Scholar 

  • Junge R, König B, Villarroel M, Komives T, Jijakli MH (2017) Strategic points in aquaponics. Water 9:182. https://doi.org/10.3390/w9030182

  • Karplus I, Sagi A (2010) The biology and management of size variation. In: New b MB, Valenti WC, Ti- dwell JH, D’Abramo LR, Kutty MN (eds) Freshwater prawns: biology and farming. Wiley-Blackwell, Oxford, pp 316–345

    Google Scholar 

  • Konnerup D, Trang NTD, Brix H (2011) Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics. Aquaculture 313:57–64. https://doi.org/10.1016/j.aquaculture.2010.12.026

    Article  Google Scholar 

  • Lennard WA, Leonard BV (2006) A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac Int 14:539–550. https://doi.org/10.1007/s10499-006-9053-2

    Article  Google Scholar 

  • Lin YF, Jing SR, Lee DY, Chang YF, Chen YM, Shih KC (2005) Performance of a constructed wetlands treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environ Pollut Barking 134:411–421. https://doi.org/10.1016/j.envpol.2004.09.015

    Article  CAS  Google Scholar 

  • Love DC, Fry JP, Genello L, Hill ES, Frederick JA, Li X, Semmens K (2014) An international survey of aquaponics practitioners. PLoS One 9:1–10. https://doi.org/10.1371/journal.pone.0102662

    Article  CAS  Google Scholar 

  • Maciel CR, Valenti WC (2009) Biology, fisheries, and aquaculture of the Amazon River prawn Macrobrachium amazonicum: a review. Nauplius 17:61–79

    Google Scholar 

  • Mariscal-Lagarda MM, Páez-Osuna F, Esquer-Méndez JL, Guerrero-Monroy I, Vivar AR, Félix-Gastelum R (2012) Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: management and production. Aquaculture 366:76–84. https://doi.org/10.1016/j.aquaculture.2012.09.003

    Article  CAS  Google Scholar 

  • Marques HLA, Barros HP, Mallasen M, Boock MV, Moraes-Valenti PMC (2012) Influence of stocking densities in the nursery phase on the growth of Macrobrachium amazonicum reared in net pens. Aquaculture 358–359:240–245. https://doi.org/10.1016/j.aquaculture.2012.06.011

    Article  Google Scholar 

  • Moraes-Valenti P, Morais PA, Preto BL, Valenti WC (2010) Effect of density on population development in the Amazon River Prawn Macrobrachium amazonicum. Aquat Biol 9:291–301. https://doi.org/10.3354/ab00261

    Article  Google Scholar 

  • Moraes-Valenti PMC, Valenti WC (2007) Effect of intensification on grow out of the Amazon River Prawn, Macrobrachium amazonicum. J World Aquacult Soc 38:516–526. https://doi.org/10.1111/j.1749-7345.2007.00125.x

    Article  Google Scholar 

  • Moraes-Valenti P, Valenti WC (2010) Culture of the Amazon River prawn Macrobrachium amazonicum. In: New MB, Valenti WC, Tidwell JH, D’Abramo LR, Kutty MN (eds) Freshwater prawns: biology and farming. Wiley-Blackwell, Oxford, pp 485–501

    Google Scholar 

  • Moraes-Riodades PMC, Kimpara JM, Valenti WC (2006) Effect of the Amazon river prawn Macrobrachium amazonicum culture intensification on ponds hydrobiology. Acta Limnol Bras 4(18):311–319

  • Negrini C, Castro CS, Bittencourt-Guimarães AT, Frozza A, Ortiz-Kracizy R, Cupertino-Ballester EL (2017) Stocking density for freshwater prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae) in biofloc system. Lat Am J Aquat Res 455:891–899

    Article  Google Scholar 

  • Nogueira M, Pinto FR, Nunes AP, Guariz CSL, Amaral LA (2014) Effluents quality during the grow-out phase of the Amazon shrimp Macrobrachium amazonicum. Cienc Anim Bras 15(2):159–167. https://doi.org/10.1590/1809-6891v15i219521

    Article  Google Scholar 

  • Pinheiro I, Arantes R, Espírito-Santo CM, Vieira FN, Lapa KR, Gonzaga LV, Fett R, Barcelos-Oliveira JL, Seiffert WQ (2017) Production of the halophyte Sarcocornia ambigua and pacific white shrimp in an aquaponic system with biofloc technology. Ecol Eng 100:261–267. https://doi.org/10.1016/j.ecoleng.2016.12.024

    Article  Google Scholar 

  • Paul P, Rahman A, Hossain MM, Islam S, Mondal S, Haq M (2016) Effect of stocking density on the growth and production of freshwater prawn (Macrobrachium rosenbergii). Int J Fish Aquac Sci 6:77–86. https://doi.org/10.1590/S0101-81751993000300009

    Article  Google Scholar 

  • Pinho SM, Molinari D, Mello GL, Fitzsimmons KM, Emerenciano MGC (2017) Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol Eng 103:146–153. https://doi.org/10.1016/j.ecoleng.2017.03.009

    Article  Google Scholar 

  • Preto BL, Pizzato GM, Vallenti WC (2008) Use of feeding trays on grow-out phase of Amazon River prawn, Macrobrachium amazonicum (Heller, 1862). B Inst Pesca 34:125–130 (in Portuguese with English abstract)

    Google Scholar 

  • Preto BL, Kimpara JM, Moraes-Valenti P, Valenti WC (2010) Population structure of pond-raised Macrobrachium amazonicum with different stocking and harvesting strategies. Aquaculture 307:206–211. https://doi.org/10.1016/j.aquaculture.2010.07.023

    Article  Google Scholar 

  • Preto BL, Kimpara JM, Moraes-Valenti P, Rosa FRT, Valenti WC (2011) Production strategies for short term grow-out of the Amazon River prawn Macrobrachium amazonicum (Heller 1862) in ponds. Pan-Am J Aquat Sci 6(1):1–8

    Google Scholar 

  • Rakocy JE, Masser MP, Losordo TM (2006) Aquaponics—integrating fish and plant. Recirculating aquaculture tank production systems, SRAC publication no. 454 (Obtained from http://www2.ca.uky.edu/wkrec/454fs.PDF on January 2017)

  • Rakocy JE (2007) Ten guideline for aquaponic systems. Aquaponics Journal 46:14–17

    Google Scholar 

  • Rodrigues IN, Lopes MTG, Lopes R, Gama AS, Milagres CP (2008) Performance of lettuce cultivars in the region of Manaus. Hortic Bras 26:524–527. https://doi.org/10.1590/S0102-05362008000400020

    Article  Google Scholar 

  • Roosta HR (2014) Effects of foliar spray of K on mint, radish, parsley and coriander plants in aquaponic system. J Plant Nutr 37:2236–2254. https://doi.org/10.1080/01904167.2014.920385

    Article  CAS  Google Scholar 

  • Sace CF, Fitzsimmons KM (2013) Recirculating aquaponic systems using Nile tilapia (Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) polyculture and the productivity of selected leafy vegetables. Merit Res J Bus and Manag 1:11–29. https://doi.org/10.15413/ajar.2013.0138

    Article  Google Scholar 

  • Sampaio CMS, Silva RR, Santos JA, Sales SP (2007) Reproductive cycle of Macrobrachium amazonicum females (Crustacea, Palaemonidae). Braz J Biol 67(3):551–559. https://doi.org/10.1590/S1519-69842007000300022

    Article  CAS  Google Scholar 

  • Seawright DE, Stickney RR, Walker RB (1998) Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture 160:215–237. https://doi.org/10.1016/S0044-8486(97)00168-3

    Article  CAS  Google Scholar 

  • Shi Y, Zhang G, Liu J, Zhu Y, Xu J (2011) Performance of a constructed wetland in treating brackish wastewater from commercial recirculating and super-intensive shrimp grow out systems. Bioresour Technol 102:9416–9424. https://doi.org/10.1016/j.biortech.2011.07.058

    Article  CAS  Google Scholar 

  • Sikawa DC, Yakupitiyage A (2010) The hydroponic production of lettuce (Lactuca sativa L.) by using hybrid catfish (Clarias macrocephalus x C. gariepinus) pond water: potentials and constraints. Agric Water Manag 97(9):1317–1325. https://doi.org/10.1016/j.agwat.2010.03.013

    Article  Google Scholar 

  • Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A, (2014). Small-scale aquaponic food production: integrated fish and plant farming. In: FAO, U. (Ed.), FAO Fisheries and Aquaculture Technical Paper, Rome, pp. 1–262

  • Trang NTD, Brix H (2014) Use of planted biofilters in integrated recirculating aquaculture-hydroponics systems in the Mekong Delta, Vietnam. Aquac Res 45:460–469. https://doi.org/10.1111/j.1365-2109.2012.03247.x

    Article  CAS  Google Scholar 

  • Tidwell JH, Bratvold D (2005) Utility of add substrates in shrimp culture. In: Periphyton—ecology, exploitation, and management (ed. by Azim ME, Verdegem MCJ, Van Dam AA, Beveridge MCM), pp. 247–268. CABI Publishing, UK

  • Timmons MB, Ebeling JM, Weathon FW, Summerfelt ST, Vinci BJ (2002). Recirculating aquaculture system, 2nd edition. Cayuga Aqua Ventures, Ithaca, New York, USA

  • UN—United Nations (2015) Transforming our World: the 2030 Agenda for Sustainable Development [online]. Resolution adopted by the General Assembly on 25 September 2015. A/RES/70/1. https://sustainabledevelopment.un.org/post2015/transformingourworld/publication

  • Wetzel JE (2001) A production methods for freshwater prawn in Illinois Ponds. Rural Enterprise and Alternative Development Initiative Report. Report No.10, 13 pp

  • Zachritz WH II, Hanson AT, Sauceda JA, Fitzsimmons KM (2008) Evaluation of submerged surface flow (SSF) constructed wetlands for recirculating tilapia production systems. Aquac Eng 39:16–23. https://doi.org/10.1016/j.aquaeng.2008.05.001

    Article  Google Scholar 

  • Zhang SY, Li G, Wu HB, Liu XG, Yao YH, Tao L, Liu H (2011) An integrated recirculating aquaculture system (RAS) for land-based fish farming: the effects on water quality and fish production. Aquac Eng 45:93–102. https://doi.org/10.1016/j.aquaeng.2011.08.001

    Article  Google Scholar 

  • Zou Y, Hu Z, Zhang J, Xie H, Guimbaud C, Fang Y (2016) Effects of pH on nitrogen transformations in media-based aquaponic. Bioresour Technol 210(2016):81–87. https://doi.org/10.1016/j.biortech.2015.12.079

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for all the support.

Funding

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Project no. 444367/2014-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jô de Farias Lima.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Farias Lima, J., Duarte, S.S., Bastos, A.M. et al. Performance of an aquaponics system using constructed semi-dry wetland with lettuce (Lactuca sativa L.) on treating wastewater of culture of Amazon River shrimp (Macrobrachium amazonicum). Environ Sci Pollut Res 26, 13476–13488 (2019). https://doi.org/10.1007/s11356-019-04496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04496-5

Keywords

Navigation