Skip to main content
Log in

Mechanisms into the removal and translocation of cadmium by Oudemansiella radicata in soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigated the removal and translocation mechanism of cadmium (Cd) by Oudemansiella radicata (O. radicata) in mushroom-soil rhizosphere and the fruiting body of mushroom. For this, the biomass, physiochemical parameters, and Cd distribution of O. radicata were examined in the soil spiked with 0, 10, 20, and 30 mg kg−1 Cd. The soil microecology and the Cd fractionation in the soil rhizosphere were also measured. Results showed that, O. radicata possesses high capability to tolerate Cd, although its surface phenotypic structure was influenced by high concentrations of Cd. The observed concentrations of Cd in O. radicata were in the following order: root (the part of stipe in soil) > pileus > stipe. The presence of Cd led to an increase in the production of antioxidant enzymes and glutathione (GSH). These results suggested that antioxidant enzymes and GSH assisted detoxification and accumulation of Cd within the mushroom. Meanwhile, in the soil rhizosphere, the concentrations of oxalic, citric, and malic acids were enhanced with the treatment of Cd, indicating that the production of these acids was closely related to the presence of Cd in soils. Additionally, the proportion of acid-soluble Cd was increased and the soil microecology (microbial counts, urease, and acid phosphatase activities) also enhanced with the inoculation of O. radicata. Overall, this study demonstrated that O. radicata is a promising candidate for the remediation of Cd-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cen F, Hu Y, Xu H (2012) Responses of antioxidant defenses in Coprinus comatus exposed to cadmium and mercury toxicity. Asian J Chem 24:4679–4685

    CAS  Google Scholar 

  • Chatterjee D, Datta SC, Manjaiah KM (2014) Transformation of short-range order minerals in maize (Zea mays L.) rhizosphere. Plant Soil Environ 60:241–248

    Article  CAS  Google Scholar 

  • Chaturvedi AD, Pal D, Penta S, Kumar A (2015) Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World J Microbiol Biotechnol 31:1595–1603

    Article  CAS  Google Scholar 

  • Chen HM, Zheng CR, Tu C, Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    Article  CAS  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  • Chiang PN, Wang MK, Chiu CY, Chou SY (2010) Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environ Toxicol 21:479–488

    Article  CAS  Google Scholar 

  • Chiang PN, Chiu CY, Wang MK, Chen BT (2011) Low-molecular-weight organic acids exuded by millet (Setaria italica (L.) Beauv.) roots and their effect on the remediation of cadmium-contaminated soil. Soil Sci 176:33–38

    Article  CAS  Google Scholar 

  • Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin L-H, Lowry SR (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science (New York, NY) 322:275–278

    Article  CAS  Google Scholar 

  • Cieśliński G, Rees KCJV, Szmigielska AM, Krishnamurti GSR, Huang PM (1998) Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203:109–117

    Article  Google Scholar 

  • Collinhansen C, Andersen RA, Steinnes E (2005) Damage to DNA and lipids in Boletus edulis exposed to heavy metals. Mycol Res 109:1386–1396

    Article  CAS  Google Scholar 

  • Davezza M, Fabbri D, Prevot AB, Pramauro E (2011) Removal of alkylphenols from polluted sites using surfactant-assisted soil washing and photocatalysis. Environ Sci Pollut Res Int 18:783–789

    Article  CAS  Google Scholar 

  • Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity - a review. Plant Soil Environ 53:193–200

    Article  CAS  Google Scholar 

  • Dresler S, Hanaka A, Bednarek W, Maksymiec W (2014) Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol Plant 36:1565–1575

    Article  CAS  Google Scholar 

  • Duarte B, Delgado M, Caçador I (2007) The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere 69:836–840

  • Falandysz J (2016) Mercury bio-extraction by fungus Coprinus comatus: a possible bioindicator and mycoremediator of polluted soils? Environ Sci Pollut Res Int 23:7444–7451

    Article  CAS  Google Scholar 

  • Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501

    Article  CAS  Google Scholar 

  • Falandysz J, Mędyk M, Treu R (2018) Bio-concentration potential and associations of heavy metals in Amanita muscaria (L.) Lam. from northern regions of Poland. Environ Sci Pollut Res 25:25190–25206

    Article  CAS  Google Scholar 

  • Fei X, Xu L, Chen Y, Ke Z, Xu H (2016) Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed. Sci Rep 6:26201

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hong J, Lei Z, Zheng B, Wang G (2012) Role of organic acids in desorption of mercury from contaminated soils in eastern Shandong Province, China. Chin Geogr Sci 22:414–421

    Article  Google Scholar 

  • Hui L, Na L, Li JZ, Hai MZ, Yan WL, Quan YC, Ming HW, Mo CH (2016) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190

    Article  CAS  Google Scholar 

  • Irfan M, Ahmad A, Hayat S (2014) Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci 21:125–131

    Article  CAS  Google Scholar 

  • Jia Z, Deng J, Chen N, Shi W, Tang X, Xu H (2016) Bioremediation of cadmium-dichlorophen co-contaminated soil by spent Lentinus edodes substrate and its effects on microbial activity and biochemical properties of soil. J Soils Sediments 17:1–11

    Article  CAS  Google Scholar 

  • Jiang Y, Purchase D, Jones H, Garelick H (2011) Effects of arsenate (AS5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris. Int. J. Phytoremediation 13:834–844

    Article  CAS  Google Scholar 

  • Jiang J, Qin C, Shu X, Chen R, Song H, Li Q, Xu H (2015) Effects of copper on induction of thiol-compounds and antioxidant enzymes by the fruiting body of Oudemansiella radicata. Ecotoxicol Environ Saf 111:60–65

    Article  CAS  Google Scholar 

  • Kim SB, Kim SH, Lee KR, Shim JO, Lee MW, Shim MJ, Lee UY, Lee TS (2005) The optimal culture conditions for the mycelial growth of Oudemansiella radicata. Mycobiology 33:230–234

    Article  CAS  Google Scholar 

  • Lan PY, Jian Z, Ping W, Jing Z, Rong T, Yu ZY, Zhi ML (2018) Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicol Environ Saf 160:10–18

    Article  CAS  Google Scholar 

  • Li F, Fan Z, Xiao P, Oh K, Ma X, Hou W (2009) Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environ Geol 57:1815–1823

    Article  CAS  Google Scholar 

  • Li H, Liu Y, Zeng G, Zhou L, Wang X, Wang Y, Wang C, Hu X, Xu W (2014) Enhanced efficiency of cadmium removal by Boehmeria nivea (L.) Gaud. in the presence of exogenous citric and oxalic acids. J Environ Sci 26:2508–2516

    Article  Google Scholar 

  • Li X, Dong S, Yuan Y, Shi W, Wu M, Xu H (2016) Inoculation of bacteria for the bioremediation of heavy metals contaminated soil by Agrocybe aegerita. RSC Adv 6:65816–65824

    Article  CAS  Google Scholar 

  • Li X, Wang Y, Pan Y, Yu H, Zhang X, Shen Y, Jiao S, Wu K, La G, Yuan Y (2017) Mechanisms of Cd and Cr removal and tolerance by macrofungus Pleurotus ostreatus HAU-2. J Hazard Mater 330:1–8

    Article  CAS  Google Scholar 

  • Liao M, Huang C (2002) Effects of organic acids on the toxicity of cadmium during ryegrass growth. Chin J Appl Ecol 13:109–112

    CAS  Google Scholar 

  • Lipka K, Falandysz J (2017) Accumulation of metallic elements by Amanita muscaria from rural lowland and industrial upland regions. J Environ Sci Health B 52:184–190

    Article  CAS  Google Scholar 

  • Liu H, Liu Y, Zeng G, Xie J, Zheng B, Tan X, Wang D, Sun Z, Nie J, Jiang Z (2015) Mitigation mechanism of Cd-contaminated soils by different levels of exogenous low-molecular-weight organic acids and Phytolacca americana. RSC Adv 5:47–49

    Google Scholar 

  • Lu L, Tian S, Zhang M, Zhang J, Yang X, Jiang H (2010) The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii. J Hazard Mater 183:22–28

    Article  CAS  Google Scholar 

  • Luevano J, Damodaran C (2014) A review of molecular events of cadmium-induced carcinogenesis. J Environ Pathol Toxicol Oncol 33:183–194

  • Ma L, Peng Y, Wu B, Lei D, Xu H (2013) Pleurotus ostreatus nanoparticles as a new nano-biosorbent for removal of Mn(II) from aqueous solution. Chem Eng J 225:59–67

    Article  CAS  Google Scholar 

  • Malar S, Vikram SS, Favas PJ, Perumal V (2016) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55:1–11

    Article  CAS  Google Scholar 

  • Mihoub A, Bouhoun MD, Naeem A, Saker ML (2016) Low-molecular weight organic acids improve plant availability of phosphorus in different textured calcareous soils. Arch Agron Soil Sci 63:1023–1034

    Article  CAS  Google Scholar 

  • Mleczek M, Zuzanna M, Monika G, Przemysław N, Pavel K, Marek S, Piotr R, Sylwia Z, Krzysztof S (2016) Content of selected elements and low-molecular-weight organic acids in fruiting bodies of edible mushroom Boletus badius (Fr.) Fr. from unpolluted and polluted areas. Environ Sci Pollut Res 23:20609–20618

    Article  CAS  Google Scholar 

  • Montielrozas MM, Madejón E, Madejón P (2016) Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: an assessment in sand and soil conditions under different levels of contamination. Environ Pollut 216:273–281

    Article  CAS  Google Scholar 

  • Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574

    Article  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  CAS  Google Scholar 

  • Sebastian A, Prasad MNV (2018) Exogenous citrate and malate alleviate cadmium stress in Oryza sativa L.: probing role of cadmium localization and iron nutrition. Ecotoxicol Environ Saf 166:215–222

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tica D, Udovic M, Lestan D (2011) Immobilization of potentially toxic metals using different soil amendments. Chemosphere 85:577–583

    Article  CAS  Google Scholar 

  • Tuzen M, Sesli E, Soylak M (2007) Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control 18:806–810

    Article  CAS  Google Scholar 

  • Vig K, Megharaj M, Sethunathan N (2004) Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv Environ Res 8:121–135

    Article  CAS  Google Scholar 

  • Wang SH, Shih YL, Ko WC, Wei YH, Shih CM (2008) Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci 65:3640–3652

    Article  CAS  Google Scholar 

  • Wu B, Cheng G, Kai J, Shi W, Wang C, Xu H (2016) Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil. Sci Total Environ 562:732–739

    Article  CAS  Google Scholar 

  • Xiao K, Liu H, Dong S, Fan X, Chen Y, Xu H (2016) Interfacial effect of Stropharia rugoso-annulata in liquid medium: interaction of exudates and nickel-quintozene. RSC Adv 6:86068–86081

    Article  CAS  Google Scholar 

  • Xiao K, Li Y, Sun Y, Liu R, Li J, Zhao Y, Xu H (2017) Remediation performance and mechanism of heavy metals by a bottom-up activation and extraction system using multiple biochemical materials. ACS Appl Mater Interfaces 9:30448–30457

    Article  CAS  Google Scholar 

  • Xie H, Chen Y, Wang C, Shi W, Zuo L, Xu H (2015) The removal of fluoranthene by Agaricus bisporus immobilized in Ca-alginate modified by Lentinus edodes nanoparticles. RSC Adv 5:44812–44823

    Article  CAS  Google Scholar 

  • Xu H, Song P, Gu W, Yang Z (2011) Effects of heavy metals on production of thiol compounds and antioxidant enzymes in Agaricus bisporus. Ecotoxicol Environ Saf 74:1685–1692

    Article  CAS  Google Scholar 

  • Yang S, Sun X, Shen Y, Chang C, Guo E, La G, Zhao Y, Li X (2017) Tolerance and removal mechanisms of heavy metals by fungus Pleurotus ostreatus Haas. Water Air Soil Pollut 228:130–139

    Article  CAS  Google Scholar 

  • Zantua MI, Bremner JM (1975) Comparison of methods of assaying urease activity in soils. Soil Biol Biochem 7:291–295

    Article  CAS  Google Scholar 

  • Zhan F, Qin L, Guo X, Tan J, Liu N, Zu Y, Li Y (2016) Cadmium and lead accumulation and low-molecular-weight organic acids secreted by roots in an intercropping of a cadmium accumulator Sonchus asper L. with Vicia faba L. RSC Adv 6:33240–33248

    Article  CAS  Google Scholar 

  • Zhang W, Hu Y, Cao Y, Huang F, Xu H (2012) Tolerance of lead by the fruiting body of Oudemansiella radicata. Chemosphere 88:467–475

    Article  CAS  Google Scholar 

  • Zhang Q, Zhou W, Liang G, Sun J, Wang X, He P (2015) Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment. Appl Soil Ecol 94:59–71

    Article  Google Scholar 

  • Zhao F, Wang L, Gaohua JI, Weixing LI (2012) Effects of NaCl stress on plant biology indicators and MDA content of 3 submerged plants. Environ Pollut Control-in Chinese 34:40–44

  • Zhuo S, Wang Y, Kang XF (2017) Engineered protein nanopore for real-time monitoring single-molecule reaction between cadmium ion and glutathione. Chin J Anal Chem 45:1172–1178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Guanglei Cheng and Dong Yu from Sichuan University for their technical assistance.

Funding

The study was financially supported by the Key Research and Development Program of Sichuan Province (2017SZ0181), the Agricultural science and Technology Achievements Transformation Program of Sichuan Province (2017NZZJ008), and the NSFC (No. 41171253).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng Xu or Yunzhen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Roberto Terzano

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xiao, K., Ma, H. et al. Mechanisms into the removal and translocation of cadmium by Oudemansiella radicata in soil. Environ Sci Pollut Res 26, 6388–6398 (2019). https://doi.org/10.1007/s11356-018-4042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-4042-3

Keywords

Navigation