Skip to main content

Advertisement

Log in

Occurrence, fate, and transport of potentially toxic metals (PTMs) in an alkaline rhizosphere soil-plant (Maize, Zea mays L.) system: the role of Bacillus subtilis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Utilization of microbes is one of the most promising methods to remediate potentially toxic metals (PTMs) from soil. In this study, a systematic investigation was conducted to study the influence of Bacillus subtilis on PTMs occurrence, fractionation, translocation, and accumulation in the rhizosphere soil of Maize (Zea mays L.) in pot experiments. B. subtilis showed strong effects on the fate and mobility of Pb, Sb, Ni, Zn, Cu, and Cr, and it also affected PTMs’ distribution in the rhizosphere soil, maize growth, and microbial community structure. Results showed that it was easier for Zn to accumulate in maize roots than other PTMs. According to chemical fractionation, B. subtilis tended to immobilize Pb, Sb, Ni, Zn, and Cu in the rhizosphere soil. Compared with other PTMs, Cr tended to be more available and more mobile, which indicated a higher health risk to the eco-environment. These findings suggested that B. subtilis could be used as a geomicrobiological stabilizer to immobilize PTMs (Pb, Sb, Ni, Cu, Zn) in alkaline soils and decrease their uptake by plants, thus reducing the risks of a potential transfer into the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alagic SC, Tosic SB, Dimitrijevic MD, Antonijevic MM, Nujkic MM (2015) Assessment of the quality of polluted areas based on the content of heavy metals in different organs of the grapevine (Vitis vinifera) cv Tamjanika. Environ Sci Pollut Res Int 22(9):7155–7175

    Article  CAS  Google Scholar 

  • Alford ÉR, Pilon-Smits EAH, Paschke MW (2010) Metallophytes—a view from the rhizosphere. Plant Soil 337(1–2):33–50

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, Ullah E, Tung SA, Samad RA, Shahzad B (2015) Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res Int 22(21):17022–17030

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):e94. https://doi.org/10.3390/ijerph14010094

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20(6):642–650

    Article  CAS  Google Scholar 

  • Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57(1):233–266

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    CAS  Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev of Microbiol 43(1):147–171

    Article  CAS  Google Scholar 

  • Bonanno G (2011) Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol Environ Saf 74(4):1057–1064

    Article  CAS  Google Scholar 

  • Bonanno G (2013) Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol Environ Saf 97:124–130

    Article  CAS  Google Scholar 

  • Bonanno G, Lo Giudice R (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10(3):639–645

    Article  CAS  Google Scholar 

  • Burt RL, Hernandez R, Shaw R, Tunstead R, Ferguson PS (2014) Trace element concentration and speciation in selected urban soils in New York City. Environ Monit Assess 186(1):195–215

    Article  CAS  Google Scholar 

  • Cai L, Xu Z, Bao P, He M, Dou L, Chen L, Zhou Y, Zhu YG (2015) Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. J Geochem Explor 148:189–195

    Article  CAS  Google Scholar 

  • Çolak F, Atar N, Yazıcıoğlu D, Olgun A (2011) Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chem Eng J 173(2):422–428

    Article  CAS  Google Scholar 

  • Cornu JY, Huguenot D, Jezequel K, Lollier M, Lebeau T (2017) Bioremediation of copper-contaminated soils by bacteria. World J Microbiol Biotechnol 33(2):26

    Article  CAS  Google Scholar 

  • Costa ACAD (1999) Chemical interactions between mercurial species and surface biomolecules from structural components of some biological systems, in mercury contaminated sites: characterization, risk assessment and remediation. Springer, Berlin Heidelberg

    Google Scholar 

  • Cram S, Sommer I, Fernández P, Galicia L, Ríos C, Barois I (2015) Soil natural capital modification through landuse and cover change in a tropical forest landscape. J Trop For Sci 27:189–201

  • Dassen SR, Cortois H, Martens M, de Hollander GA, Kowalchuk WH, van der Putten DDGB (2017) Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol Ecol 26(15):4085–4098

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325

    Article  CAS  Google Scholar 

  • Dessaux Y, Grandclément C, Faure D (2016) Engineering the rhizosphere. Trends Plant Sci 21(3):266–278

    Article  CAS  Google Scholar 

  • Dhanakumar S, Solaraj G, Mohanraj R (2015) Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicol Environ Saf 113:145–151

    Article  CAS  Google Scholar 

  • Dormeyer MR, Egelkamp MJ, Thiele E, Hammer K et al (2015) A novel engineering tool in the Bacillus subtilis toolbox: inducer-free activation of gene expression by selection-driven promoter decryptification. Microbiology 161(Pt 2):354–361

    Article  CAS  Google Scholar 

  • Evangelou MWH, Kutschinski-Klöss S, Ebel M, Schaeffer A (2007) Potential of Borago officinalis, Sinapis alba L. and Phacelia boratus for Phytoextraction of Cd and Pb from soil. Water Air Soil Poll 182(1–4):407–416

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. P Natl Acade of Sci USA 103(3), 626–631

  • Foucault Y, Leveque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment. Chemosphere 93(7):1430–1435

    Article  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122(2–4):109–119

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(Pt 3):609–643

    Article  CAS  Google Scholar 

  • Guo Y, Du W, Wang S, Tan L (2016) The biosorption of Sr(II) on Bacillus subtilis: a combined batch and modeling study. J Mol Liq 220:762–767

    Article  CAS  Google Scholar 

  • Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52(1):265–275

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Uber neuer Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer. Berücksichtigung der Gründüngung und Brache 32:1405–1417

    Google Scholar 

  • Hofman J, Stokkaer I, Snauwaert L, Samson R (2013) Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles. Environ Pollut 183:123–132

    Article  CAS  Google Scholar 

  • Hou D, Wang K, Liu T, Wang H, Lin Z, Qian J, Lu L, Tian S (2017) Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii. Environ Sci Technol 51(10):5675–5684

    Article  CAS  Google Scholar 

  • Jong T, Parry DL (2004) Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis. J Environ Monit 6(4):278–285

    Article  CAS  Google Scholar 

  • Khan AS, Khan M, Khan A, Qamar Z, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res Int 22(18):13772–13799

    Article  CAS  Google Scholar 

  • Kısa D, Elmastaş M, Öztürk L, Kayır Ö (2016) Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl Biol Chem 59(6):813–820

    Article  CAS  Google Scholar 

  • Li S, Peng M, Liu Z, Shah SS (2017a) The role of soil microbes in promoting plant growth. Mol Microbiol Res. https://doi.org/10.5376/mmr.2017.07.0004

  • Li H, Yang Q, Fan N, Zhang M, Zhai H, Ni Z, Zhang Y (2017b) Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid zhengdan 958 by design III. BMC Genet 18:36. https://doi.org/10.1186/s12863-017-0503-9

    Article  Google Scholar 

  • Liu L, Chen H, Cai P, Liang W, Huang Q (2009) Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J Hazard Mater 163(2):563–567

    Article  CAS  Google Scholar 

  • Lockwood CL, Stewart DI, Mortimer RJG, Mayes WM, Jarvis AP, Gruiz K, Burke IT (2015) Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary: the importance of soil organic matter. Environ Sci Pollut R 22(14):10800–10810

    Article  CAS  Google Scholar 

  • Luo Z, Wadhawan A, Bouwer EJ (2010) Sorption behavior of nine chromium (III) organic complexes in soil. Int J Environ Sci T 7(1):1–10

    Article  Google Scholar 

  • Małecka M, Wójcik J, Sierota Z (2014) Chemical composition of soils on post-agricultural and forest sites before and after sawdust addition against the background of weather elements. For Res Papers 75(2):139–148

  • Martínez-Sánchez MJ, García-Lorenzo ML, Pérez-Sirvent C, Bech J (2012) Trace element accumulation in plants from an aridic area affected by mining activities. J Geochem Explor 123:8–12

    Article  CAS  Google Scholar 

  • Matyar F, Kaya A, Dincer S (2008) Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Sci Total Environ 407(1):279–285

    Article  CAS  Google Scholar 

  • McCauley A, Jones C, Jacobsen J (2009) Soil pH and organic matter. Nutrient management. Montana State University Extension Service, Bozeman

    Google Scholar 

  • Mustapha MU, Halimoon N (2015) Microorganisms and biosorption of heavy metals in the environment: a review paper. J Microbial Biochem Technol 07(05). https://doi.org/10.4172/1948-5948.1000219

  • Niemeyer JC, Lolata GB, de Carvalho GM, Da Silva EM, Sousa JP, Nogueira MA (2012) Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Appl Soil Ecol 59:96–105

    Article  Google Scholar 

  • Oburger E, Schmidt H (2016) New methods to unravel rhizosphere processes. Trends Plant Sci 21(3):243–255

    Article  CAS  Google Scholar 

  • Pagnanelli F, Esposito A, Toro L, Vegliò F (2003) Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res 37(3):627–633

    Article  CAS  Google Scholar 

  • Petr K, Bernd S, Astrid R, Ursula H, Reza K, Norbert C (2011) Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant Biol 11(1):121

    Article  CAS  Google Scholar 

  • Petriacq P, Williams A, Cotton A, McFarlane AE, Rolfe SA, Ton J (2017) Metabolite profiling of non-sterile rhizosphere soil. Plant J 92(1):147–162

    Article  CAS  Google Scholar 

  • Phillips DP, Human LRD, Adams JB (2015) Wetland plants as indicators of heavy metal contamination. Mar Pollut Bull 92(1–2):227–232

    Article  CAS  Google Scholar 

  • Pinheiro JP, Mota AM, Benedetti MF (1999) Lead and calcium binding to fulvic acids: salt effect and competition. Environ Sci Technol 33(19):3398–3404

    Article  CAS  Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5(4):961–970

    CAS  Google Scholar 

  • Rai AK, Singh DP, Prabha R, Kumar M, Sharma L (2016) Microbial Inoculants: identification, characterization, and applications in the field. In: Singh DP, Singh HB, Prabha R (eds) Microbial Inoculants in Sustainable Agricultural Productivity, Vol. 1: Research Perspectives. Springer India, New Delhi, pp 103–115

    Chapter  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. Isme J 1:283–290

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of Bacteria in soil. PLoS Comput Biol 2(7):e92

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation: role of synthetic and natural organic ligands. J Hazard Mater 219-220:1–12

    Article  CAS  Google Scholar 

  • Shrestha R, Fischer R, Sillanpää M (2007) Investigations on different positions of electrodes and their effects on the distribution of Cr at the water sediment interface. Int J Environ Sci Technol 4(4):413–420

    Article  CAS  Google Scholar 

  • Simon E, Braun M, Vidic A, Bogyó D, Fábián I, Tóthmérész B (2011) Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environ Pollut 159(5):1229–1233

    Article  CAS  Google Scholar 

  • Song W, Kim M, Tripathi BM, Kim H, Adams JM (2016) Predictable communities of soil bacteria in relation to nutrient concentration and successional stage in a laboratory culture experiment. Environ Microbiol 18(6):1740–1753

    Article  CAS  Google Scholar 

  • Spain AV, Isbell RF, , Probert ME (1983) Soil organic matter. In: ‘Soils—an Australian viewpoint’, pp 551–563. CSIRO, Melbourne Australia. Academic Press, London UK

    Google Scholar 

  • Thomasi SS, Fernandes RBA, Fontes RLF, Jordão CP (2014) Sequential extraction of copper, nickel, zinc, lead and cadmium from Brazilian Oxysols: metal leaching and metal distribution in soil fractions. Int J Environ Stud 72(1):41–55

    Article  CAS  Google Scholar 

  • Tiquia SM, Lloyd J, Herms DA, Hoitink HAJ, Michel FC (2002) Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Appl Soil Ecol 21(1):31–48

    Article  Google Scholar 

  • Van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21(3):256–265

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Padmesh TV, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133(1):304–308

    Article  CAS  Google Scholar 

  • Yao AV, Bochow H, Karimov S, Boturov U, Sanginboy S, Sharipov AK (2006) Effect of FZB 24®Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch Phytopathol Plant Prot 39(4):323–328

    Article  Google Scholar 

  • You M, Huang Y, Lu J, Li C (2015) Fractionation characterizations and environmental implications of heavy metal in soil from coal mine in Huainan, China. Environ Earth Sci 75(1)

  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159(1):84–91

    Article  CAS  Google Scholar 

  • Zhang T, Zou H, Ji M, Li X, Li L, Tang T (2014) Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes. Environ Sci Pollut Res Int 21(4):3126–3133

    Article  CAS  Google Scholar 

  • Ziegler J, Schmidt S, Chutia R, Müller J, Böttcher C, Strehmel N, Scheel D, Abel S (2016) Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation. J Exp Bot 67(5):1421–1432

    Article  CAS  Google Scholar 

  • Zou T, Li T, Zhang X, Yu H, Luo H (2011) Lead accumulation and tolerance characteristics of Athyrium wardii (Hook.) as a potential phytostabilizer. J Hazard Mater 186(1):683–689

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the National Natural Science Foundation of China (41471420, 41877517), the project of International Science and Technology Innovation and Cooperation Base of Shaanxi Province (2018GHJD-16), the Natural Science Foundation of Shaanxi Province (2015JM4124), and the Fundamental Research Funds for the Central Universities (GK201701010, GK 200902024, and GK201402032).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoping Li conceived and designed the experiments. Dongying Liu performed the experiments, and Yue Cai organized and wrote the manuscript, Howard W. Mielke revised the manuscript. Yuwei Ai, Meng Zhang, Yu Gao, Yuchao Zhang, Xu Zhang, Xiangyang Yan, Bin Liu, and Hongtao Yu contributed the sampling, reagents, materials, and data analysis.

Corresponding author

Correspondence to Xiaoping Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Roberto Terzano

Electronic supplementary materials

ESM 1

(DOCX 133 kb)

ESM 2

(DOCX 14.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cai, Y., Liu, D. et al. Occurrence, fate, and transport of potentially toxic metals (PTMs) in an alkaline rhizosphere soil-plant (Maize, Zea mays L.) system: the role of Bacillus subtilis. Environ Sci Pollut Res 26, 5564–5576 (2019). https://doi.org/10.1007/s11356-018-4031-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-4031-6

Keywords

Navigation