Skip to main content
Log in

Adsorption of indigo carmine on Pistia stratiotes dry biomass chemically modified

  • Alternative Adsorbent Materials for Application in Processes Industrial
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pistia stratiotes is a common aquatic plant of the northern region of the state of Rio de Janeiro, and its use as adsorbent material was studied in the present work. The preparation process included washing, drying, grinding, and acid activation. The sorption potential for removal of the indigo carmine dye from aqueous solutions was tested under various conditions, such as initial concentration, contact time, and temperature. The tests showed that the obtained biosorbent showed good performance for dye removal with a maximum capacity of 41.2 mg/g. The kinetic studies revealed that the pseudo-second-order equation provided the best fit of the experimental data. The Freundlich isotherm provided the best fit of the experimental sorption data for the system under study. The results obtained show that Pistia stratiotes has great potential to be used as biosorbent for the removal of dyes from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almeida ESC et al (2017) Body adhesion balance of rhodamine B in activated coal obtained from green coconut residues. JCEC 3(8):1051–1058

  • Arenas CN, Vasco A, Betancur M, Martínez JD (2017) Removal of indigo carmine (IC) from aqueous solution by adsorption through abrasive spherical materials made of rice husk ash (RHA). Process Saf Environ Prot 106:224–238

    Article  CAS  Google Scholar 

  • Bera A, Kumar T, Ojha K, Mandal A (2013) Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms, kinetics and thermodynamic studies. Appl Surf Sci 284:87–99

    Article  CAS  Google Scholar 

  • Biswajit D et al (2013) Equilibrium, kinetic and thermodynamic study on chromium (VI) removal from aqueous solution using Pistia stratiotes biomass. Chem Sci Trans 2(1):85–104

  • Boas NV et al (2012) Copper biosorption using the natural and chemically treated mesocarp and endocarp of macadamia. Rev Bras Eng Agric Ambient 16:12

  • Butterworth KR, Hoosen J, Gaunt IF, Kiss IS, Grasso P (1975) Long-term toxicity of indigo carmine in mice. Food Cosmet Toxicol 13(2):167–176

    Article  CAS  Google Scholar 

  • Chattoraj S, Mondal NK, Das B, Roy P, Sadhukhan B (2014) Biosorption of carbaryl from aqueous solution onto Pistia stratiotes biomass. Appl Water Sci 4:79–88

    Article  CAS  Google Scholar 

  • Chaves KO, Monteiro CRL, Muniz CR, Gomes RB, de Brito Buarque HL (2008) Adsorção de índigo carmim em biomassas mortas de Aspergillus niger. Eng Sanit Ambient 13(4):351–355

    Article  Google Scholar 

  • Cunha BC (2014) Use of alternative biosorbents in the removal of textile dyes. Completion work of environmental engineering course, Federal Technological University of Paraná

  • Dallago RM, Smaniotto A, Oliveira LCA (2005) Solid tanneric wastes as adsorbents for the removal of dyes in aqueous media. Quím Nova 3(28):433–437

    Article  Google Scholar 

  • Das B, Mondal NK, Roy P, Chattaraj S (2013) Equilibrium, kinetic and thermodynamic study on chromium(VI) removal from aqueous solution using Pistia stratiotes biomass. Chem Sci Trans 2:85–104

    Article  Google Scholar 

  • Du J, Sun P, Feng Z, Zhang X, Zhao Y (2015) The biosorption capacity of biochar for 4-bromodiphengl ether: study of its kinetics, mechanism, and use as a carrier for immobilized bacteria. Environ Sci Pollut Res 23:3770–3780. https://doi.org/10.1007/s11356-015-5619-8

    Article  CAS  Google Scholar 

  • Dural MU et al (2011) Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: kinetics and equilibrium studies. Chem Eng J 168(1):77–85

    Article  CAS  Google Scholar 

  • El-Ashtoukhy ESZ (2013) Removal of indigo carmine dye from synthetic wastewater by electrochemical oxidation in a new cell with horizontally oriented electrodes. Int J Electrochem Sci 8:846–858

    CAS  Google Scholar 

  • Ferreira RM, Oliveira NM, Tacase I, Stapelfeldt DMA (2016) Pb (II) adsorption by biomass from chemically modified aquatic macrophytes, Salvinia sp. and Pistia stratiotes. Water Sci Technol 73: 2670-2679

  • Gaunt F, Kiss IS, Grasso P, Gangolli SD (1969) Short-term toxicity study on indigo carmine in the pig. Food Cosmet Toxicol 71:17–24

    Article  Google Scholar 

  • Gialamouidis D, Mitrakas M, Liakopoulou-Kyriakides M (2010) Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by Pseudomonas sp, Staphylococcus xylosus and Blakeslea trispora cells. J Hazard Mater 182:672–680

    Article  CAS  Google Scholar 

  • Jenkins CL (1978) Textile dyes are potential hazards. Arch Environ Health 40(5):7–12

    Google Scholar 

  • Kesraoui A, Selmi T, Seffen M, Brouers F (2016) Influence of alternating current on the adsorption of indigo carmine. Environ Sci Pollut Res 24(11):9940–9950

    Article  Google Scholar 

  • Kirupavasam EK, AllenGnana Raj G (2012) Photocatalytic degradation of amido black-10B using nano photocatalyst. J Chem Pharm Res 4(6):2979–2987

    CAS  Google Scholar 

  • Klen MRG, Cervelin PC, Veit MT, Goncalves GC, Bergamasco R, Silva FV (2012) Adsorption kinetics of blue 5G dye from aqueous solution on dead floating aquatic macrophyte: effect of pH, temperature, and pretreatment. Water Air Soil Pollut 223:4369–4381

    Article  Google Scholar 

  • Lakshmi UR, Srivastava VC, Mall ID, Lataye DH (2009) Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for indigo carmine dye. J Environ Manag 90:710–720

    Article  CAS  Google Scholar 

  • Maghri I, Kenz A, Elkouali M, Tanane O, Talbi M (2012) Textile dyes removal from industrial wastewater by Mytilus edulis shells. J Mater Environ Sci 3(1):121–136

    CAS  Google Scholar 

  • Mahmoud ME, El Zokm GM, Farag AE, Abdelwahab MS (2017) Assessment of heat-inactivated marine Aspergillus flavus as a novel biosorbent for removal of Cd (II), Hg (II), and Pb (II) from water. Environ Sci Pollut Res 24(22):18218–18228

    Article  CAS  Google Scholar 

  • Mittal J, Mittal L, Kurup L (2006) Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption. J Hazard Mater 137(1):591–602

    Article  CAS  Google Scholar 

  • Nascimento ACC et al (2017) Biosorption of indigo carmine by Pennisetum purpureum Schumach. 1827 (Poales: Poaceae) (Capim elefante). JEAP 2(1):44–49

  • Paschoal FMM, Tremiliosi-Filho G (2005) Application of electroflocculation technology in the recovery of indigo blue dye from industrial effluents. Quím Nova 28(5):766–772

    Article  Google Scholar 

  • Patel VS, Adhvaryu MR (2016) Removal of textile dye by using Eichhornia spp. and Pistia spp. by aquatic macrophytes treatment systems (AMTS) – an eco friendly technique. IJSER 4(7):62–66

  • Patil S, Deshmukh V, Renukdas S, Patel N (2011) Kinetics of adsorption of crystal violet from aqueous solutions using different natural materials. Int J Environ Sci 1(6):1116–1134

    CAS  Google Scholar 

  • Ramakrishnan M, Nagarajan S (2009) Utilization of waste biomass for the removal of basic dye from water. World Appl Sci J 5:114–121

    Google Scholar 

  • Ramesh TN, Sreenivasa VP (2015) Removal of indigo carmine dye from aqueous solution using magnesium hydroxide as an adsorbent. J Mater 10:1–10. https://doi.org/10.1155/2015/753057

    Article  CAS  Google Scholar 

  • Regalbuto JO, Robles JR (2004) The engineering of Pt/carbon catalyst preparation for application on proton exchange fuel cell membrane. Catalysis Laboratory, University of Illinois at Chicago, Progress Report

  • Rosa MPD (2015) Lignin extraction from the rice husk residue by the organossolve method. Federal University of Rio Grande. Rio Grande 64

  • Rossi A, Rigon MR, Zaparoli M, Dalmas R (2018) Chromium (VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environ Sci Pollut Res 25:19179–19186. https://doi.org/10.1007/s11356-018-2377-4

    Article  CAS  Google Scholar 

  • Sivasamy A, Nethaj S, Josmin Lalli Nisha L (2012) Equilibrium, kinetic and thermodynamic studies on the biosorption of reactive acid dye on Enteromorpha flexuosa and Gracilaria corticata. Environ Sci Pollut Res 19:1687–1695. https://doi.org/10.1007/s11356-011-0666-2

    Article  CAS  Google Scholar 

  • Skinner K, Wright N, Porter-Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145:234–237

    Article  CAS  Google Scholar 

  • Stergiopoulos D, Dermentzis K, Giannakoudakis P, Sotiropoulos S (2014) Electrochemical decolorization and removal of indigo carmine textile dye from wastewater. Glob NEST J 16(3):499–506

    Article  Google Scholar 

  • Sune N, Sanchez G, Caffaratti S, Maine MA (2007) Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Pollut 145:467–473

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle M. A. Stapelfeldt.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, R.M., de Oliveira, N.M., Lima, L.L.S. et al. Adsorption of indigo carmine on Pistia stratiotes dry biomass chemically modified. Environ Sci Pollut Res 26, 28614–28621 (2019). https://doi.org/10.1007/s11356-018-3752-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3752-x

Keywords

Navigation