Skip to main content
Log in

Evaluation of mercury phytoavailability in Oxisols

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mercury is a metal which is potentially toxic for the environment. Many factors control its retention in the soil, such as cation exchange capacity, pH, clay content, organic matter, and redox potential. It is important to know the phytotoxic effects of soil Hg to prevent environmental contamination and its entry into the food chain. Several analytical methods are used to measure metal phytoavailability in soils, but none has been reported for Hg in Oxisols, the most common soil class in Brazil and a very important soil class throughout the tropics. The aim of this study was to select the chemical extractor that best correlated the Hg levels in plants and the Oxisols. The soils used were classified as Dystrophic Red-Yellow Oxisol (LVAd) and Dystroferric Red Oxisol (LVdf), which were collected in the 0–0.2-m soil layer. The species selected for cultivation were a monocotyledon, oat (Avena sativa L. cv. São Carlos) and a eudicotyledon, common bean (Phaseolus vulgaris L. cv. Madrepérola). Each test plot was composed of a 500 cm3 pot filled with soil samples contaminated with HgCl2. Treatments were arranged in a completely randomized design, with four replications. The experiment was conducted for 30 days. Mercury contents were separately extracted with the following extractors: USEPA 3051A, Mehlich-1, Mehlich-3, DTPA, and water. Mercury was determined by hydride generation atomic absorption spectroscopy. The extracted contents were correlated with the contents in the tissues of the plants’ aerial part by the Pearson correlation. Although it is not considered a standard procedure to evaluate metal phytoavailable contents, the method that presented the best correlations between soil Hg and plant Hg was USEPA 3051A (r = 0.75*). As expected, the worst correlation was with water (r = 0.57* for common bean and r = 0,05ns for oat).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu CA, Abreu MF, Andrade JC (1998) Distribuição de chumbo no perfil de solo avaliada pelas soluções de DTPA e Mehlich-3. Bragantia 57:185–192 (in Portuguese)

    Article  Google Scholar 

  • Abreu CA, Abreu MF, Berton RS (2002) Análise química de solo para metais pesados. In: Alvarez VVCH, Schaefer CEGR, Barros NF, Mello JWV, Costa LM (eds) Tópicos em Ciência do Solo, Vol 2. SBCS, Viçosa, pp 645–692 (in Portuguese)

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioaccessibility and the risk of metals. New York Springs, New York

    Book  Google Scholar 

  • Alvares VH, Ribeiro AC (1999) Calagem. In: Ribeiro AC, Guimarães PTG, Alvarez VH (eds) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5ª aproximação. Comissão de Fertilidade do Solo do Estado de Minas Gerais, Viçosa, pp 43–60 (in Portuguese)

  • American Public Health Association – APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC

  • Bank MS (2012) Mercury in the environment: pattern and process. University of California Press, California

    Book  Google Scholar 

  • Bigham G, Liang L, Balouet JC, Chalot M (2015) Phytoscreening-based assessment of mercury in soil. Environ Sci Pollut Res 22(23):19285–19291

    Article  CAS  Google Scholar 

  • Camargos AO, Moniz AC, Jorge JA, Valadares JMAS (2009) Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas (Boletim Técnico, 106). Instituto Agronômico, Campinas. Available online at http://www.iac.sp.gov.br/produtoseservicos/analisedosolo/docs/Boletim_Tecnico_106_rev_atual_2009.pdf. Accessed 31 Oct 2018 (in Portuguese)

  • Carvalho GS (2007) Efeito de resíduos siderúrgicos no cultivo de arroz irrigado por inundação: comparação de extratores e disponibilidade de elementos-traço. Dissertation, Federal University of Lavras (in Portuguese)

  • Conselho Estadual de Política Ambiental – COPAM (2011) Deliberação Normativa COPAM n° 166, de 29 de junho de 2011. Diário do Executivo do Estado de Minas Gerais, 27/07/2011. pp 18–19, Belo Horizonte. Available online at http://www.siam.mg.gov.br/sla/download.pdf?idNorma=18414. Accessed 31 Oct 2018 (in Portuguese)

  • Ding X, Wang R, Li Y, Gan Y, Liu S, Dai J (2017) Insights into the mercury (II) adsorption and binding mechanism onto several typical soils in China. Environ Sci Pollut Res 24(30):23607–23619

    Article  CAS  Google Scholar 

  • During A, Rinklebe J, Bohme F, Wennrich R, Stark HJ, Mothes S, Laing GD, Schulz E, Neue HU (2009) Mercury volatilization from three floodplain soils at the Central Elbe River, Germany. Soil Sediment Contam 18:429–444

    Article  CAS  Google Scholar 

  • Eisler R (2006) Mercury hazards to living organisms. CRC Press, New York

    Book  Google Scholar 

  • Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA (1997) Manual de métodos de análises de solo. 2nd edn. Centro Nacional de Pesquisa de Solos, Rio de Janeiro. Available online at http://www.agencia.cnptia.embrapa.br/Repositorio/Manual+de+Metodos_000fzvhotqk02wx5ok0q43a0ram31wtr.pdf. Accessed 31 Oct 2018 (in Portuguese)

  • Frossard A, Hartmann M, Frey B (2017) Tolerance of the forest soil microbiome to increasing mercury concentrations. Soil Biol Biochem 105:162–176

    Article  CAS  Google Scholar 

  • Frossard A, Donhauser J, Mestrot A, Gygax S, Bååth E, Frey B (2018) Long-and short-term effects of mercury pollution on the soil microbiome. Soil Biol Biochem 120:191–199

    Article  CAS  Google Scholar 

  • González-Fernández B, Menéndez-Casares E, Meléndez-Asensio M, Fernández-Menéndez S, Ramos-Muñiz F, Cruz-Hernández P, González-Quirós A (2014) Sources of mercury in groundwater and soils of west Gijón (Asturias, NW Spain). Sci Total Environ 481:217–231

    Article  Google Scholar 

  • Guilherme LRG, Marques JJ, Pierangeli MAP, Zuliani DQ, Campos ML, Marchi G (2005) Elementostraço em solos e sistemas aquáticos. In: Torrado-Vidal P, Alleoni LRF, Cooper M, Silva AP (eds) Tópicos em ciência do solo, 4rd edn, vol 4. SBCS, Viçosa, pp. 345–390.

  • Hibbert DB (1999) Method validation of modern analytical techniques. Accred Qual Assur 4:352–356

    Article  Google Scholar 

  • Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. J Geochem Explor 80(1):95–104

    Article  CAS  Google Scholar 

  • International Organizations for Standardization – (ISO) (2012) Soil quality – determination of the effects of pollutants on soil flora – part 2: effects of contaminated soil on the emergence and early growth of higher plants. ISO 11269-2, ISO, Geneva

  • Kabata-Pendias A, Szteke B (2015) Trace elements in abiotic and biotic environments. CRC Press, New York

    Book  Google Scholar 

  • Lacerda LD, de Souza M, Ribeiro MG (2004) The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon. Environ Pollut 129(2):247–255

    Article  CAS  Google Scholar 

  • Li Y, Zhao J, Guo J, Liu M, Xu Q, Li H, Li Y, Zheng L, Zhang Z, Gao Y (2017) Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere 182:293–300

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Liu J, Dai J, Wang R, Li F, Du X, Wang W (2010) Adsorption/desorption and fate of mercury (II) by typical black soil and red soil in China. Soil Sediment Contam 19(5):587–601

    Article  CAS  Google Scholar 

  • Liu G, Cai Y, O'Driscoll N (2012) Environmental chemistry and toxicology of mercury. John Wiley & Sons, New York

    Google Scholar 

  • Malavolta E (1981) Manual de química agrícola: adubos e adubação. Agronômica, São Paulo (in Portuguese)

    Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants. Academic Pres, London

    Google Scholar 

  • Mattiazzo ME, Berton RS, Cruz MCP (2001) Disponibilidade e avaliação de metais pesados potencialmente tóxicos. In: Ferreira ME (ed) Micronutrientes e elementos tóxicos na agricultura. CNPq/Fapesp/Potafos, Jaboticabal (in Portuguese)

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Mehlich A (1953) Determination of P, Ca, Mg, K, Na, and NH4 (1953) North Carolina Soil Test Division, Raleigh, North Carolina

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416

    Article  CAS  Google Scholar 

  • Melendez-Perez JJ, Fostier AH, Carvalho JA, Windmoller CC, Santos JC, Carpi A (2014) Soil and biomass mercury emissions during a prescribed fire in the Amazonian rain forest. Atmos Environ 96:415–422

    Article  CAS  Google Scholar 

  • Melo WJ (2012) Mercury sorption and desorption by tropical soils. In: Selim HM (ed) Competitive sorption and transport of heavy metals in soils and geological media. CRC Press, Boca Raton, pp 147–214

    Chapter  Google Scholar 

  • Moreno FN, Anderson CW, Stewart RB, Robinson BH, Ghomshei M, Meech JA (2005) Induced plant uptake and transport of mercury in the presence of sulphur containing ligands and humic acid. New Phytol 166:445–454

    Article  CAS  Google Scholar 

  • Nascimento RS, Skorupa AL, Passos LP, Marques JJ (2014) Extração e fitodisponibilidade de zinco e chumbo em latossolo tratado com resíduos de siderurgia. Rev Bras Ciênc Agrárias 9:322–329 (in Portuguese)

  • Pannu R, Siciliano SD, O’Driscoll NJ (2014) Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils. Environ Pollut 193:138–146

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422

    Article  Google Scholar 

  • Penha JG, Carvalho GS, Abreu LB, de Ribeiro BT, Costa ETS, Marques JJ (2017) Procedimentos para quantificação de elementos-traço por espectrofotometria de absorção atômica em matrizes de interesse ambiental, 1st edn. Boletim Técnico, UFLA, Lavras (in Portuguese)

  • Pires AMM, Mattiazzo ME, Berton RS (2004) Ácidos orgânicos como extratores de metais pesados fitodisponíveis em solos tratados com lodo de esgoto. Pesq Agrop Brasileira 39:671–676 (in Portuguese)

    Article  Google Scholar 

  • Plawiak RAB, de Figueiredo BR, Licht OAB (2007) Ocorrência de mercúrio em rochas, solo e sedimento fluvial na bacia do rio Iguaçu, Estado do Paraná, Brasil. Geociências 25(4):437–447 (in Portuguese)

    Google Scholar 

  • Raij BV, Bataglia OC (1991) Análise de laboratório. In: Oliveira AJ, Garrido WE, Araujo JD, Lourenço S (eds) Métodos de pesquisa em fertilidade do solo. Embrapa-SEA, Brasília, pp.81–101 (in Portuguese)

  • Raij BV, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas (in Portuguese)

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter: a review. Chemosphere 55:319–351

    Article  CAS  Google Scholar 

  • Reis AT, Lopes CB, Davidson CM, Duarte AC, Pereira E (2014) Extraction of mercury water-soluble fraction from soils: an optimization study. Geoderma 213:255–260

  • Rogers RD, Mc Farlane JC (1979) Factors influencing the volatilization of mercury from soil. J Environ Qual 8:255–260

    Article  CAS  Google Scholar 

  • Rundgren S et al (1992) Mercury in soil: distribution, speciation and biological effects. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resourc 34:43

  • Soares LC, Linhares LA, Egreja Filho FB, Windmöller CC, Yoshida MI (2015) Mercúrio em solos da região sudeste do Brasil sem influência antropogênica e sua correlação com as características químicas e físicas. Rev Bras Ciênc Solo 39:903–914 (in Portuguese)

  • Teixeira RA, Fernandes AR, Ferreira JR, Vasconcelos SS, Braz MAS (2018) Contamination and soil biological properties in the Serra Pelada mine - Amazonia, Brazil. Revista Brasileira de Ciência do Solo 42:e0160354

    Article  Google Scholar 

  • Tinôco AAP, Azevedo ICAD, Marques EAG, Mounteer AH, Martins CDP, Nascentes R, Reis EF, Natalino R (2010) Avaliação de contaminação por mercúrio em Descoberto, MG. Engenharia Sanitária e Ambiental 15(4):305–314 (in Portuguese)

    Article  Google Scholar 

  • U.S. Environmental Protection Agency-USEPA (1998) Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils; test methods for evaluating solid waste, physical/chemical methods. USEPA, Washington

    Google Scholar 

  • Wang D, He L, Shi X, Wei S, Feng X (2006) Release flux of mercury from different environmental surfaces in Chongqing, China. Chemosphere 64:1845–1854

    Article  CAS  Google Scholar 

  • Windmöller CC, Durão WA, Oliveira A, Valle CM (2015) The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): implications for the mercury cycle. Ecotoxicol Environ Saf 112:201–211

    Article  Google Scholar 

  • Yin Y, Allen HE, Li Y, Huang CP, Sanders PF (1996) Adsorption of mercury (II) by soil: effects of pH, chloride and organic matter. J Environ Qual 25:837–844

    Article  CAS  Google Scholar 

Download references

Funding

Authors would like to thank the financial support from the National Council of Technology and Scientific Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), and the Foundation for Research Support of the Minas Gerais State (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João José Marques.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, F.R.D., Engelhardt, M.M., Vasques, I.C.F. et al. Evaluation of mercury phytoavailability in Oxisols. Environ Sci Pollut Res 26, 483–491 (2019). https://doi.org/10.1007/s11356-018-3623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3623-5

Keywords

Navigation