Skip to main content

Advertisement

Log in

Dysregulation of Sqstm1, mitophagy, and apoptotic genes in chronic exposure to arsenic and high-fat diet (HFD)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Arsenic (As) is a toxic and hazardous metalloid. Unfortunately, its presence in drinking water together with wrong nutritional patterns is associated with an increase in the occurrence of metabolic disorders in young people. Degradation of mitochondria is presented by a specific form of autophagy called mitophagy which is an important landmark leading to apoptosis during lipotoxicity. Lipotoxicity and cellular toxicity due to arsenic intake can lead to changes in mitophagy and apoptosis. The protein derived from SQSTM1 gene, also called p62, plays an important role in energy homeostasis in the liver, and it can contribute to the regulation of autophagic responses given its effect on signaling of mTOR, MAPK, and NF-KB. Consequently, changes in Sqstm1, mitophagy (BNIP3), and apoptotic (caspase 3) genes in the livers of NMRI mice were examined with the use of real-time RT-PCR Array followed by exposure to an environmentally relevant and negligible cytotoxic concentration of arsenite (50 ppm) in drinking water while being fed with a high-fat diet (HFD) or low-fat diet (LFD) for 20 weeks (LFD-As and HFD-As groups). While LFD-As and HFD groups showed a decrease in BNIP3 expression, a significant increase was observed in the HFD-As group. P62 gene showed downregulation in LFD-As and HFD groups, and upregeneration was observed in the HFD-As group. Caspase 3 showed increased expression as the key factor associated with apoptotic liver cell death in the three groups, with the highest value in HFD-As group. Overall, the changes observed in the expression of Sqstm1, BNIP3, and caspase 3 in this study can be related to the level of liver damage caused by exposure to arsenic and HFD and probably, BNIP3 pro-apoptotic protein is associated with an increased cell death due to HFD and As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abernathy CO, Thomas DJ, Calderon RL (2003) Health effects and risk assessment of arsenic. J Nutr 133:1536S–1538S

    Article  CAS  Google Scholar 

  • Ahangarpour A, Oroojan AA, Rezae M, Khodayar MJ, Alboghobeish S, Zeinvand M (2017) Effects of butyric acid and arsenic on isolated pancreatic islets and liver mitochondria of male mouse. Gastroenterology and Hepatology From Bed to Bench 10:44–53

    Google Scholar 

  • Ahangarpour A, Alboghobeish S, Rezaei M, Khodayar MJ, Oroojan AA, Zainvand M (2018) Evaluation of diabetogenic mechanism of high fat diet in combination with arsenic exposure in male mice. Iranian Journal of Pharmaceutical Research 17

  • Bai J, Yao X, Jiang L, Zhang Q, Guan H, Liu S, Wu W, Qiu T, Gao N, Yang L, Yang G, Sun X (2016) Taurine protects against As2O3-induced autophagy in livers of rat offsprings through PPARγ pathway. Sci Rep 6:27733. https://doi.org/10.1038/srep27733

    Article  CAS  Google Scholar 

  • Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J (2018) Arsenic in groundwater of West Bengal, India: a review of human health risks and assessment of possible intervention options. Sci Total Environ 612:148–169

    Article  CAS  Google Scholar 

  • Biswas A, Das A, Deb D, Ghose A, Mazumder DNG (2018) Cancer risk estimation from dietary arsenic, a new approach from longitudinal cohort study. Stoch Env Res Risk A 32:1035–1050

    Article  Google Scholar 

  • Brown KG, Ross GL (2002) Arsenic, drinking water, and health: a position paper of the American Council on Science and Health. Regul Toxicol Pharmacol 36:162–174

    Article  CAS  Google Scholar 

  • Bülow MH et al (2018) Unbalanced lipolysis results in lipotoxicity and mitochondrial damage in peroxisome-deficient Pex19 mutants. Mol Biol Cell 29:396–407

    Article  Google Scholar 

  • Cavaliere V, Lombardo T, Costantino SN, Kornblihtt L, Alvarez EM, Blanco GA (2014) Synergism of arsenic trioxide and MG132 in Raji cells attained by targeting BNIP3, autophagy, and mitochondria with low doses of valproic acid and vincristine. Eur J Cancer 50:3243–3261

    Article  CAS  Google Scholar 

  • Chilakapati J, Wallace K, Hernandez-Zavala A, Moore T, Ren H, Kitchin KT (2015) Pharmacokinetic and genomic effects of arsenite in drinking water on mouse lung in a 30-day exposure. Dose-Response 13:1559325815592392. https://doi.org/10.1177/1559325815592392

    Article  CAS  Google Scholar 

  • Choudhury S, Ghosh S, Mukherjee S, Gupta P, Bhattacharya S, Adhikary A, Chattopadhyay S (2016) Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells. J Nutr Biochem 38:25–40

    Article  CAS  Google Scholar 

  • Del Razo LM et al (2011) Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapan and Lagunera regions in Mexico. Environ Health 10:73

    Article  Google Scholar 

  • Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Asp Med 25:365–451

    Article  CAS  Google Scholar 

  • Dutta M et al (2014) High fat diet aggravates arsenic induced oxidative stress in rat heart and liver. Food Chem Toxicol 66:262–277

    Article  CAS  Google Scholar 

  • Engel RR, Receveur O (1993) Re:“Arsenic ingestion and internal cancers: a review”. Am J Epidemiol 138:896–897

    Article  CAS  Google Scholar 

  • Graier WF, Malli R, Kostner GM (2009) Mitochondrial protein phosphorylation: instigator or target of lipotoxicity? Trends Endocrinol Metab 20:186–193. https://doi.org/10.1016/j.tem.2009.01.004

    Article  CAS  Google Scholar 

  • Grau-Perez M et al (2018) Arsenic exposure, diabetes-related genes and diabetes prevalence in a general population from Spain. Environ Pollut 235:948–955

    Article  CAS  Google Scholar 

  • Guo Z et al (2017) The optimal dose of arsenic trioxide induced opposite efficacy in autophagy between K562 cells and their initiating cells to eradicate human myelogenous leukemia. J Ethnopharmacol 196:29–38

    Article  CAS  Google Scholar 

  • Hou H, Yu Y, Shen Z, Liu S, Wu B (2017) Hepatic transcriptomic responses in mice exposed to arsenic and different fat diet. Environ Sci Pollut Res 24:10621–10629

    Article  CAS  Google Scholar 

  • Hsueh Y-M, Cheng G, Wu M, Yu H, Kuo T, Chen CJ (1995) Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. Br J Cancer 71:109

    Article  CAS  Google Scholar 

  • Huang C-F et al (2015) Arsenic exposure and glucose intolerance/insulin resistance in estrogen-deficient female mice. Environ Health Perspect 123:1138

    Article  CAS  Google Scholar 

  • Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332

    Article  CAS  Google Scholar 

  • Islam MR et al (2012) Association between type 2 diabetes and chronic arsenic exposure in drinking water: a cross sectional study in Bangladesh. Environ Health 11:38

    Article  Google Scholar 

  • Jain A et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576–22591. https://doi.org/10.1074/jbc.M110.118976

    Article  CAS  Google Scholar 

  • Katsuragi Y, Ichimura Y, Komatsu M (2016) Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1. Curr Opin Toxicol 1:54–61. https://doi.org/10.1016/j.cotox.2016.09.005

    Article  Google Scholar 

  • Law BA, Roddy P, Liao X, Schulze P, Cowart L (2015) Lipid oversupply to cardiomyocytes induces sphingolipid-dependent oxidative stress and induction of mitophagy through ceramide synthase 2. Am Heart Assoc,

  • Li S et al (2016) Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3 Drug design. Dev Ther 10:631

    Article  CAS  Google Scholar 

  • Li Y, Zhang Y, Gao Y, Zhang W, Cui X, Liu J, Wei Y (2018) Arsenic induces Thioredoxin 1 and apoptosis in human liver HHL-5 cells. Biol Trace Elem Res 181:234–241

    Article  CAS  Google Scholar 

  • Liu X et al (2016) MicroRNA-21 activation of ERK signaling via PTEN is involved in arsenite-induced autophagy in human hepatic L-02 cells. Toxicol Lett 252:1–10. https://doi.org/10.1016/j.toxlet.2016.04.015

    Article  CAS  Google Scholar 

  • Manley S, Williams JA, Ding W-X (2013) The role of p62/SQSTM1 in liver physiology and pathogenesis. Experimental biology and medicine (Maywood, NJ) 238:525–538 https://doi.org/10.1177/1535370213489446

    Article  Google Scholar 

  • Meliker JR, Wahl RL, Cameron LL, Nriagu JO (2007) Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis. Environ Health 6:4

    Article  Google Scholar 

  • Mitra SR et al (2004) Nutritional factors and susceptibility to arsenic-caused skin lesions in West Bengal, India. Environ Health Perspect 112:1104

    Article  CAS  Google Scholar 

  • Nakamura Y et al (2012) BNIP3 and NIX mediate Mieap-induced accumulation of lysosomal proteins within mitochondria. PLoS One 7:e30767. https://doi.org/10.1371/journal.pone.0030767

    Article  CAS  Google Scholar 

  • Navas-Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E (2006) Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiologic evidence. Environ Health Perspect 114:641

    Article  CAS  Google Scholar 

  • Nesha M, Islam M, Ferdous N, Nazrul FB, Rasker JJ (2018) Chronic arsenic exposure through drinking water and risk of type 2 diabetes mellitus: a study from Bangladesh. J Family Med Prim Care Open Acc: JFOA-113 DOI 10

  • Niu Z, Zhang W, Gu X, Zhang X, Qi Y, Zhang Y (2016) Mitophagy inhibits proliferation by decreasing cyclooxygenase-2 (COX-2) in arsenic trioxide-treated HepG2 cells. Environ Toxicol Pharmacol 45:212–221

    Article  CAS  Google Scholar 

  • Pan J-A et al (2016) TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol Cell 61:720–733. https://doi.org/10.1016/j.molcel.2016.02.007

    Article  CAS  Google Scholar 

  • Pang L et al (2018) Differential effects of reticulophagy and mitophagy on nonalcoholic fatty liver disease. Cell Death Dis 9:90

    Article  Google Scholar 

  • Paul DS, Walton FS, Saunders RJ, Stýblo M (2011) Characterization of the impaired glucose homeostasis produced in C57BL/6 mice by chronic exposure to arsenic and high-fat diet. Environ Health Perspect 119:1104–1109. https://doi.org/10.1289/ehp.1003324

    Article  CAS  Google Scholar 

  • Perluigi M, Di Domenico F, Butterfield DA (2015) mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis 84:39–49

    Article  CAS  Google Scholar 

  • Pickles S, Vigié P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28:R170–R185

    Article  CAS  Google Scholar 

  • Rana T, Bera AK, Das S, Bhattacharya D, Pan D, Das SK (2016) Inhibition of oxidative stress and enhancement of cellular activity by mushroom lectins in arsenic induced carcinogenesis. Asian Pac J Cancer Prev 17:4185–4197

    Google Scholar 

  • Rautou P-E, Mansouri A, Lebrec D, Durand F, Valla D, Moreau R (2010) Autophagy in liver diseases. J Hepatol 53:1123–1134

    Article  CAS  Google Scholar 

  • Sahani MH, Itakura E, Mizushima N (2014) Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10:431–441. https://doi.org/10.4161/auto.27344

    Article  CAS  Google Scholar 

  • Santra A (2015) Arsenic-induced liver injury. In: Handbook of arsenic toxicology. Elsevier, pp 315–334

  • Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287

    Article  CAS  Google Scholar 

  • Schneider JL, Cuervo AM (2014) Autophagy and human disease: emerging themes. Curr Opin Genet Dev 26:16–23

    Article  CAS  Google Scholar 

  • Schrauwen P (2004) The role of uncoupling protein 3 in fatty acid metabolism: protection against lipotoxicity? Proc Nutr Soc 63:287–292

    Article  CAS  Google Scholar 

  • Schrauwen P, Hesselink MK (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53:1412–1417

    Article  CAS  Google Scholar 

  • Schrauwen P, Hesselink MK, Vaartjes I, Kornips E, Saris WH, Giacobino J-P, Russell A (2002) Effect of acute exercise on uncoupling protein 3 is a fat metabolism-mediated effect. Am J Physiol Endocrinol Metab 282:E11–E17

    Article  CAS  Google Scholar 

  • Schrauwen P et al (2003) Uncoupling protein 3 as a mitochondrial fatty acid anion exporter. FASEB J 17:2272–2274

    Article  CAS  Google Scholar 

  • Shi RY, Zhu SH, Li V, Gibson SB, Xu XS, Kong JM (2014) BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther 20:1045–1055

    Article  CAS  Google Scholar 

  • Sun X et al (2018) Synergistic effect of copper and arsenic upon oxidative stress, inflammation and autophagy alterations in brain tissues of Gallus gallus. J Inorg Biochem 178:54–62

    Article  CAS  Google Scholar 

  • Tseng C-H et al (2000) Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ Health Perspect 108:847

    Article  CAS  Google Scholar 

  • Tsuji JS, Alexander DD, Perez V, Mink PJ (2014) Arsenic exposure and bladder cancer: quantitative assessment of studies in human populations to detect risks at low doses. Toxicology 317:17–30

    Article  CAS  Google Scholar 

  • Turner N, Heilbronn LK (2008) Is mitochondrial dysfunction a cause of insulin resistance? Trends Endocrinol Metab 19:324–330

    Article  CAS  Google Scholar 

  • Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53:319–336

    Article  CAS  Google Scholar 

  • Unger RH (2003) Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 144:5159–5165

    Article  CAS  Google Scholar 

  • Vahter M, Concha G (2001) Role of metabolism in arsenic toxicity Pharmacology & Toxicology. MiniReview 89:1–5

    CAS  Google Scholar 

  • Van Herpen N, Schrauwen-Hinderling V (2008) Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav 94:231–241

    Article  Google Scholar 

  • Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P (2015) Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta (BBA)-Mol Basis Dis 1852:232–242

    Article  CAS  Google Scholar 

  • Walton FS, Harmon AW, Paul DS, Drobná Z, Patel YM, Styblo M (2004) Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Tox Appl Pharmacol 198:424–433. https://doi.org/10.1016/j.taap.2003.10.026

    Article  CAS  Google Scholar 

  • Wang S-F, Wu M-Y, Cai C-Z, Li M, Lu J-H (2016a) Autophagy modulators from traditional Chinese medicine: mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J Ethnopharmacol 194:861–876

    Article  CAS  Google Scholar 

  • Wang S, Pacher P, De Lisle RC, Huang H, Ding WX (2016b) A mechanistic review of cell death in alcohol-induced liver injury. Alcohol Clin Exp Res 40:1215–1223

    Article  Google Scholar 

  • Wang G et al (2017) Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radic Biol Med 106:24–37

    Article  CAS  Google Scholar 

  • Wu W et al (2018) Pancreatic islet-autonomous effect of arsenic on insulin secretion through endoplasmic reticulum stress-autophagy pathway. Food Chem Toxicol 111:19–26

    Article  CAS  Google Scholar 

  • Xia Y, Liu X, Liu B, Zhang X, Tian G (2018) Enhanced antitumor activity of combined megestrol acetate and arsenic trioxide treatment in liver cancer cells. Exp Ther Med 15:4047–4055

    Google Scholar 

  • Yang T, Blackwell R (1961) Nutritional and environmental conditions in the endemic blackfoot area. Formos Sci 15:101–129 Find this article online

    Google Scholar 

  • Yang L, Li P, Fu S, Calay ES, Hotamisligil GS (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11:467–478

    Article  CAS  Google Scholar 

  • Yousefsani BS, Pourahmad J, Hosseinzadeh H (2018) The mechanism of protective effect of crocin against liver mitochondrial toxicity caused by arsenic III. Toxicol Mech Methods 28:105–114

    Article  CAS  Google Scholar 

  • Zeinvand-Lorestani M et al (2018) Autophagy upregulation as a possible mechanism of arsenic induced diabetes. Sci Rep 8:11960

    Article  Google Scholar 

  • Zhu X-X et al (2014) Sodium arsenite induces ROS-dependent autophagic cell death in pancreatic β-cells. Food Chem Toxicol 70:144–150. https://doi.org/10.1016/j.fct.2014.05.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is issued from Ph.D. thesis of Marzieh Zeinvand-Lorestani.

Funding

This paper was financially supported by Toxicology Research Center (Grant number TRC-9505) of Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Khodayar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeinvand-Lorestani, M., Kalantari, H., Khodayar, M.J. et al. Dysregulation of Sqstm1, mitophagy, and apoptotic genes in chronic exposure to arsenic and high-fat diet (HFD). Environ Sci Pollut Res 25, 34351–34359 (2018). https://doi.org/10.1007/s11356-018-3349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3349-4

Keywords

Navigation