Skip to main content

Advertisement

Log in

Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) stress is one of the most serious threats to agriculture in the world. Oilseed rape (Brassica napus L.) is an important oil crop; however, Cd can easily accumulate in rapeseed and thus harm human health through the food chain. In the first experiment, our purpose was to measure the Cd accumulation in mature B. napus plants and its influences on fatty acid composition. The results showed that most Cd was accumulated in the root, and the seed fatty acid content was considerably different at different Cd toxicity levels. In the second experiment, 7-day-old B. napus seedlings stressed by Cd (1 mM) for 0 h (CK-0h), 24 h (T-24h), or 72 h (T-72h) were submitted to physiological and biological analyses, RNA-Seq and qRT-PCR. In total, 5469 and 6769 differentially expressed genes (DEGs) were identified in the comparisons of “CK-0h vs T-24h” and “CK-0h vs T-72h”, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the photosynthetic and glutathione (GSH) pathways were significantly enriched in response to Cd stress. Key factors in the response to Cd stress included BnPCS1, BnGSTU12, BnGSTU5, and BnHMAs. The transcription factors BnWRKY11 (BnaA03g51590D), BnWRKY28 (BnaA03g43640D), BnWRKY33 (BnaA03g17820D), and BnWRKY75 (BnaA03g04160D) were upregulated after Cd exposure. The present study revealed that upregulation of the genes encoding GST and PCS under Cd stress promoted the formation of low-molecular weight complexes (PC-Cd), and upregulation of heavy metal ATPase genes induced PC-Cd transfer to vacuoles. These findings may provide the basis for the molecular mechanism of the response of B. napus to Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.

Similar content being viewed by others

References

  • Ali B, Huang CR, Qi ZY, Ali S, Daud MK, Geng XX, Liu HB, Zhou WJ (2013) 5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape. Environ Sci Pollut Res Int 20:7256–7267

    Article  CAS  Google Scholar 

  • Ali B, Gill RA, Yang S, Gill MB, Ali S, Rafiq MT, Zhou W (2014) Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicol Environ Saf 110:197–207

    Article  CAS  Google Scholar 

  • Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W (2015) Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLoS One 10:e0123328

    Article  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, Ullah E, Tung SA, Samad RA, Shahzad B (2015) Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res Int 22:17022–17030

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bauddh K, Singh RP (2011) Differential toxicity of cadmium to mustard (Brassica juncia L.) genotypes under higher metal levels. J Environ Biol 32:355

    CAS  Google Scholar 

  • Bendall DS, Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta 1229:23–38

    Article  Google Scholar 

  • Bernard F, Dumez S, Brulle F, Lemiere S, Platel A, Nesslany F, Cuny D, Deram A, Vandenbulcke F (2016) Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb. Environ Sci Pollut Res Int 23:3136–3151

    Article  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  Google Scholar 

  • Chandra R, Kang H (2016) Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. For Sci Technol 12:55–61

    Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128

    Article  CAS  Google Scholar 

  • Choudhury MR, Islam MS, Ahmed ZU, Nayar F (2016) Phytoremediation of heavy metal contaminated Buriganga riverbed sediment by Indian mustard and marigold plants. Environ Prog 35:117–124

    CAS  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    Article  CAS  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    Article  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Devi SR, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138:157–165

    Article  CAS  Google Scholar 

  • Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56:3017–3027

    Article  CAS  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Han FX, Banin A, Su Y, Monts DL, Plodinec JM, Kingery WL, Triplett GE (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89:497–504

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061

    Article  Google Scholar 

  • Hattab S, Dridi B, Chouba L, Ben Kheder M, Bousetta H (2009) Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. J Environ Sci 21:1552–1556

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  Google Scholar 

  • Hong C, Cheng D, Zhang G, Zhu D, Chen Y, Tan M (2017) The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress. Biochem Biophys Res Commun 482:1504–1510

    Article  CAS  Google Scholar 

  • Iannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Biochem 40:977–982

    Article  CAS  Google Scholar 

  • Kim MJ, Ruzicka DR, Shin R, Schachtman DP (2012) The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant 5:1042–1057

    Article  CAS  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013) Expression of a rice lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J Hazard Mater 248-249:228–237

    Article  CAS  Google Scholar 

  • Leita L, De Nobili M, Cesco S, Mondini C (1996) Analysis of intercellular cadmium forms in roots and leaves of bush bean. J Plant Nutr 19:527–533

    Article  CAS  Google Scholar 

  • Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252

    Article  CAS  Google Scholar 

  • Li H, Ji H, Shi C, Gao Y, Zhang Y, Xu X, Ding H, Tang L, Xing Y (2017) Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health. Chemosphere 172:505–515

    Article  CAS  Google Scholar 

  • Liu JG, Liang JS, Li KQ, Zhang ZJ, Yu BY, Lu XL, Yang JC, Zhu QS (2003) Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52:1467–1473

    Article  CAS  Google Scholar 

  • Liu X, Peng K, Wang A, Lian C, Shen Z (2010) Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 78:1136–1141

    Article  CAS  Google Scholar 

  • Liu H, Zhao H, Wu L, Liu A, Zhao F-J, Xu W (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215:687–698

    Article  CAS  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  Google Scholar 

  • Nocelli N, Bogino PC, Banchio E, Giordano W (2016): Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials 9

    Article  Google Scholar 

  • Noctor G, Arisi AM, Jouanin L, Foyer CH (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118:471–482

    Article  CAS  Google Scholar 

  • Sarker N, Chowdhury MA, Fakhruddin AN, Fardous Z, Moniruzzaman M, Gan SH (2015) Heavy metal contents and physical parameters of Aegiceras corniculatum, Brassica juncea, and Litchi chinensis honeys from Bangladesh. Biomed Res Int 2015:720341

    Article  Google Scholar 

  • Stobart AK, Griffiths WT, Ameenbukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63:293–298

    Article  CAS  Google Scholar 

  • Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H (2012) The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav 7:1605–1607

    Article  CAS  Google Scholar 

  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  Google Scholar 

  • Wong CK, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78

    Article  CAS  Google Scholar 

  • Wu Z, Zhao X, Sun X, Tan Q, Tang Y, Nie Z, Hu C (2015) Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Chemosphere 119:1217–1223

    Article  CAS  Google Scholar 

  • Xu Q, Wang C, Li S, Li B, Li Q, Chen G, Chen W, Wang F (2017) Cadmium adsorption, chelation and compartmentalization limit root-to-shoot translocation of cadmium in rice (Oryza sativa L.). Environ Sci Pollut Res Int 24:11319–11330

    Article  CAS  Google Scholar 

  • Yan H, Filardo F, Hu X, Zhao X, Fu D (2016) Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. Environ Sci Pollut Res Int 23:3758–3769

    Article  CAS  Google Scholar 

  • Yin XL, Jiang L, Song NH, Yang H (2008) Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J Agric Food Chem 56:4825–4831

    Article  CAS  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:1–12

    Article  Google Scholar 

  • Yue R, Lu C, Qi J, Han X, Yan S, Guo S, Liu L, Fu X, Chen N, Yin H, Chi H, Tie S (2016) Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.). Front Plant Sci 7:1298

    Google Scholar 

  • Zhang Z, Chen B, Qiu B (2010) Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant Cell and Environ 33:1248–1255

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (31771830), the Science and Technology Committee of Chongqing (cstc2016shmszx80083), the Fundamental Research Funds for the Central Universities (XDJK2017A009), and the Technology Nova Foster Project of Chongqing City (KJXX2017010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liezhao Liu.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Figure S1

The number of differentially expressed genes (DEGs) matched to transcription factor (TF) families. (PNG 77 kb)

High resolution image (TIF 189 kb)

Table S1

(XLSX 12 kb)

Table S2

(XLSX 432 kb)

Table S3

(XLSX 13 kb)

Table S4

(XLSX 11 kb)

Table S5

(XLSX 19 kb)

Table S6

(XLSX 18 kb)

Table S7

(XLSX 14 kb)

Table S8

(XLSX 16 kb)

Table S9

(XLSX 18 kb)

Table S10

(XLSX 16 kb)

Table S11

(XLSX 11 kb)

Table S12

(XLSX 11 kb)

Table S13

(XLSX 114 kb)

Table S14

(XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Jian, H., Wang, T. et al. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Environ Sci Pollut Res 25, 32433–32446 (2018). https://doi.org/10.1007/s11356-018-3227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3227-0

Keywords

Navigation