Skip to main content
Log in

Towards visible-light photocatalysis for environmental applications: band-gap engineering versus photons absorption—a review

  • Advanced Oxidation Technologies: State-of-the-Art in Ibero-American Countries
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A range of different studies has been performed in order to design and develop photocatalysts that work efficiently under visible (and near-infrared) irradiation as well as to improve photons absorption with improved reactor design. While there is consensus on the importance of photocatalysis for environmental applications and the necessity to utilized solar irradiation (or visible-light) as driving force for these processes, it is not yet clear how to get there. Discussion on the future steps towards visible-light photocatalysis for environmental application is of great interest to scientific and industrial communities and the present paper reviews and discusses the two main approaches, band-gap engineering for efficient solar-activated catalysts and reactor designs for improved photons absorption. Common misconceptions and drawbacks of each technology are also examined together with insights for future progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelmelek SB, Greaves J, Ishida KP et al (2011) Removal of pharmaceutical and personal care products from reverse osmosis Retentate using advanced oxidation processes. Environ Sci Technol 45:3665–3671. https://doi.org/10.1021/es104287n

    Article  CAS  Google Scholar 

  • Ait ahsaine H, El Jaouhari A, Slassi A et al (2016). Electronic band structure and visible-light photocatalytic activity of Bi2WO6: elucidating the effect of lutetium doping. RSC Adv 6:101105–101114. https://doi.org/10.1039/c6ra22669h

  • Alex S, Santhosh U, Das S (2005) Dye sensitization of nanocrystalline TiO2 : Enhanced efficiency of unsymmetrical versus symmetrical squaraine dyes. Journal of Photochemistry and Photobiology A: Chemistry 172:63–71

  • Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R (2000) Photocatalysis in water environments using artificial and solar light. Catal Today 58(2-3):199–230

    Article  CAS  Google Scholar 

  • Alhaji MH, Sanaullah K, Khan A, Hamza A, Muhammad A, Ishola MS, Rigit ARH, Bhawani SA (2017) Recent developments in immobilizing titanium dioxide on supports for degradation of organic pollutants in wastewater- a review. Int J Environ Sci Technol 14:2039–2052

    Article  CAS  Google Scholar 

  • Amiri H, Nabizadeh R, Silva Martinez S, Jamaleddin Shahtaheri S, Yaghmaeian K, Badiei A, Nazmara S, Naddafi K (2018). Response surface methodology modeling to improve degradation of chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicol Environ Saf 147:919–925. https://doi.org/10.1016/j.ecoenv.2017.09.062

  • Athanasekou CP, Moustakas NG, Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AMT, Dona-Rodriguez JM, Romanos GE, Falaras P (2015) Ceramic photocatalytic membranes for water filtration under UV and visible light. Appl Catal B Environ 178:12–19. https://doi.org/10.1016/j.apcatb.2014.11.021

    Article  CAS  Google Scholar 

  • Augugliaro V, Yurdakal S, Loddo V, Palmisano G, Palmisano L (2009) Determination of photoadsorption capacity of polychrystalline TiO catalyst in irradiated slurry, In: de Lasa HI, Rosales BS (eds) Advances in Chemical Engineering, Academic Press, 36, p 1–35

  • Bagayoko D (2014) Understanding density functional theory (DFT) and completing it in practice. AIP Adv. https://doi.org/10.1063/1.4903408

  • Bagayoko D (2016) Understanding the relativistic generalization of density functional theory (DFT) and completing it in practice. J Mod Phys 07:911–919. https://doi.org/10.4236/jmp.2016.79083

    Article  CAS  Google Scholar 

  • Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ (2005) Fischer-Tropsch synthesis over iron catalysts supported on carbon nanotubes. Appl Catal A Gen 287:60–67. https://doi.org/10.1016/j.apcata.2005.03.029

    Article  CAS  Google Scholar 

  • Baudys M, Krýsa J, Zlámal M, Mills A (2015). Weathering tests of photocatalytic facade paints containing ZnO and TiO2. Chem Eng J 261:83–87. https://doi.org/10.1016/j.cej.2014.03.112

  • Bethi B, Sonawane SH, Bhanvase BA, Gumfekar SP (2016) Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process Process Intensif 109:178–189

    Article  CAS  Google Scholar 

  • Beydoun D, Amal R, Low GK-C, McEvoy S (2000) Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. J Phys Chem B 104:4387–4396. https://doi.org/10.1021/jp992088c

    Article  CAS  Google Scholar 

  • Boyjoo Y, Sun H, Liu J, Pareek VK, Wang S (2017) A review on photocatalysis for air treatment: from catalyst development to reactor design. Chem Eng J 310:537–559

    Article  CAS  Google Scholar 

  • Byrne JA, Dunlop PSM, Hamilton JWJ, Fernández-Ibáñez P, Polo-López I, Sharma P, Vennard A (2015) A review of heterogeneous photocatalysis for water and surface disinfection. Molecules 20:5574–5615. https://doi.org/10.3390/molecules20045574

    Article  CAS  Google Scholar 

  • Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176. https://doi.org/10.1002/adma.201500033

    Article  CAS  Google Scholar 

  • Capasso F (1987) Band-gap engineering: from physics and materials to new semiconductor devices. Science 235:172–176. https://doi.org/10.1126/science.235.4785.172

    Article  CAS  Google Scholar 

  • Carra I, García Sánchez JL, Casas López JL, Malato S, Sánchez Pérez JA (2014) Phenomenological study and application of the combined influence of iron concentration and irradiance on the photo-Fenton process to remove micropollutants. Sci Total Environ 478:123–132. https://doi.org/10.1016/j.scitotenv.2014.01.066

    Article  CAS  Google Scholar 

  • Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  CAS  Google Scholar 

  • Chai SY, Kim YJ, Lee WI (2006). Photocatalytic WO3/TiO2 nanoparticles working under visible light. Journal of Electroceramics, 17: 909–912. https://doi.org/10.1007/s10832-006-9073-3

  • Chen L, He J, Liu Y, Chen P, Au CT, Yin SF (2016) Recent advances in bismuth-containing photocatalysts with heterojunctions. Chin J Catal 37:780–791

    Article  CAS  Google Scholar 

  • Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6:2009. https://doi.org/10.1039/c3nr05529a

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027. https://doi.org/10.1016/j.watres.2010.02.039

    Article  CAS  Google Scholar 

  • Chung HT, Won JH, Zelenay P (2013) Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat Commun. https://doi.org/10.1038/ncomms2944

  • Colmenares JC, Varma RS, Nair V (2017) Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chem Soc Rev 46:6675–6686. https://doi.org/10.1039/C7CS00257B

    Article  CAS  Google Scholar 

  • Cottineau T, Bealu N, Gross P-A et al (2013). One step synthesis of niobium doped titania nanotube arrays to form (N,Nb) co-doped TiO2 with high visible light photoelectrochemical activity. J Mater Chem A 1:2151–2160. https://doi.org/10.1039/c2ta00922f

  • da Costa EP, Bottrel SEC, Starling MCVM, Leão MMD, Amorim CC (2018) Degradation of carbendazim in water via photo-Fenton in raceway pond reactor: assessment of acute toxicity and transformation products. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-2130-z

  • da Costa Filho BM, Araujo ALP, Silva GV, Boaventura RAR, Dias MM, Lopes JCB, Vilar VJP (2017). Intensification of heterogeneous TiO2 photocatalysis using an innovative micro-meso-structured-photoreactor for n-decane oxidation at gas phase. Chem Eng J 310:331–341. https://doi.org/10.1016/j.cej.2016.09.080

  • Danion A, Disdier J, Guillard C, Abdelmalek F, Jaffrezic-Renault N (2004). Characterization and study of a single-TiO2-coated optical fiber reactor. Appl Catal B Environ 52:213–223. https://doi.org/10.1016/j.apcatb.2004.04.005

  • Danion A, Disdier J, Guillard C, Jaffrezic-Renault N (2007) Malic acid photocatalytic degradation using a TiO -coated optical fiber reactor. J Photochem Photobiol A Chem 190(1):135–140

    Article  CAS  Google Scholar 

  • De Lasa H, Rosales BS, Moreira J, Valades-Pelayo P (2016) Efficiency factors in photocatalytic reactors: quantum yield and photochemical thermodynamic efficiency factor. Chem Eng Technol 39:51–65. https://doi.org/10.1002/ceat.201500305

    Article  CAS  Google Scholar 

  • Di Valentin C, Finazzi E, Pacchioni G et al (2007). N-doped TiO2: theory and experiment. Chem Phys 339:44–56. https://doi.org/10.1016/j.chemphys.2007.07.020

  • Diehm C, Karadeniz H, Karakaya C et al (2014) Spatial resolution of species and temperature profiles in catalytic reactors. In situ sampling techniques and CFD modeling. Adv Chem Eng 45:41–95. https://doi.org/10.1016/B978-0-12-800422-7.00002-9

    Article  Google Scholar 

  • Díez AM, Moreira FC, Marinho BA, Espíndola JCA, Paulista LO, Sanromán MA, Pazos M, Boaventura RAR, Vilar VJP (2018) A step forward in heterogeneous photocatalysis: process intensification by using a static mixer as catalyst support. Chem Eng J 343:597–606. https://doi.org/10.1016/j.cej.2018.03.041

    Article  CAS  Google Scholar 

  • Duncan WR, Prezhdo OV (2007). Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu Rev Phys Chem 58:143–184. https://doi.org/10.1146/annurev.physchem.58.052306.144054

  • Esterkin CR, Negro AC, Alfano OM, Cassano AE (2005). Air pollution remediation in a fixed bed photocatalytic reactor coated with TiO2. AICHE J 51:2298–2310. https://doi.org/10.1002/aic.10472

  • Faraldos M, Bahamonde A (2017) Environmental applications of titania-graphene photocatalysts. Catal Today 285:13–28. https://doi.org/10.1016/j.cattod.2017.01.029

    Article  CAS  Google Scholar 

  • Freitas AM, Rivas G, Campos-Mañas MC, Casas López JL, Agüera A, Sánchez Pérez JA (2017) Ecotoxicity evaluation of a WWTP effluent treated by solar photo-Fenton at neutral pH in a raceway pond reactor. Environ Sci Pollut Res 24(2):1093–1104

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972). TiO2 photoelectrochemistry and photocatalysis. Nature 213:8656

  • Ganiyu SO, Van Hullebusch ED, Cretin M et al (2015) Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol 156:891–914

    Article  CAS  Google Scholar 

  • Ghafoor S, Ata S, Mahmood N, Arshad SN (2017). Photosensitization of TiO2 nanofibers by Ag2S with the synergistic effect of excess surface Ti3+ states for enhanced photocatalytic activity under simulated sunlight. Sci Rep 7:255. https://doi.org/10.1038/s41598-017-00366-7

  • Gorges R, Meyer S, Kreisel G (2004) Photocatalysis in microreactors. J Photochem Photobiol A Chem 167:95–99. https://doi.org/10.1016/j.jphotochem.2004.04.004

    Article  CAS  Google Scholar 

  • Han MY, Ozyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98. https://doi.org/10.1103/PhysRevLett.98.206805

  • Hay SO, Obee T, Luo Z, Jiang T, Meng Y, He J, Murphy S, Suib S (2015) The viability of photocatalysis for air purification. Molecules 20:1319–1356

    Article  Google Scholar 

  • He J, Cheng Y, Wang T, Feng D, Zheng L, Shao D, Wang W, Wang W, Lu F, Dong H, Zheng R, Liu H (2018). Enhanced photocatalytic performances and magnetic recovery capacity of visible-light-driven Z-scheme ZnFe2O4/AgBr/Ag photocatalyst. Appl Surf Sci 440:99–106. https://doi.org/10.1016/j.apsusc.2017.12.219

  • Herrmann J-M (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53(1):115–129

    Article  CAS  Google Scholar 

  • Honda S, Ohkita H, Benten H, Ito S (2010) Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells. Chem Commun 46(35):6596

    Article  CAS  Google Scholar 

  • Hoye RLZ, Lee LC, Kurchin RC et al (2017) Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI). Adv Mater. https://doi.org/10.1002/adma.201702176

  • Ibhadon A, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218. https://doi.org/10.3390/catal3010189

    Article  CAS  Google Scholar 

  • Iliev V, Tomova D, Bilyarska L (2018). Promoting the oxidative removal rate of 2,4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation. J Photochem Photobiol A Chem 351:69–77. https://doi.org/10.1016/j.jphotochem.2017.10.022

  • Indermühle C, Puzenat E, Simonet F, Peruchon L, Brochier C, Guillard C (2016) Modelling of UV optical ageing of optical fibre fabric coated with TiO2. Appl Catal B Environ 182:229–235. https://doi.org/10.1016/j.apcatb.2015.09.037

  • Jiang L, Yuan X, Pan Y, Liang J, Zeng G, Wu Z, Wang H (2017) Doping of graphitic carbon nitride for photocatalysis: a review. Appl Catal B Environ 217:388–406. https://doi.org/10.1016/j.apcatb.2017.06.003

    Article  CAS  Google Scholar 

  • Kale MJ, Avanesian T, Christopher P (2014) Direct photocatalysis by plasmonic nanostructures. ACS Catal 4:116–128

    Article  CAS  Google Scholar 

  • Kalikeri S, Kodialbail VS (2018) Solar light-driven photocatalysis using mixed-phase bismuth ferrite (BiFeO /Bi FeO ) nanoparticles for remediation of dye-contaminated water: kinetics and comparison with artificial UV and visible light-mediated photocatalysis. Environ Sci Pollut Res 25(14):13881–13893

    Article  CAS  Google Scholar 

  • Keane DA, McGuigan KG, Ibáñez PF et al (2014) Solar photocatalysis for water disinfection: materials and reactor design. Catal Sci Technol 4:1211–1226. https://doi.org/10.1039/C4CY00006D

    Article  CAS  Google Scholar 

  • Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon N Y 49:741–772.

  • Leblebici ME, Stefanidis GD, Van Gerven T (2015) Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment. Chem Eng Process Process Intensif 97:106–111. https://doi.org/10.1016/j.cep.2015.09.009

    Article  CAS  Google Scholar 

  • Lewis NS (2016) Research opportunities to advance solar energy utilization. Science 351:aad1920–aad1920. https://doi.org/10.1126/science.aad1920

    Article  CAS  Google Scholar 

  • Li X, Shi J-L, Hao H, Lang X (2018). Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2018.03.043

  • Liu L, Liu J, Sun DD (2012). Graphene oxide enwrapped Ag3PO4 composite: towards a highly efficient and stable visible-light-induced photocatalyst for water purification. Catal Sci Technol 2:2525. https://doi.org/10.1039/c2cy20483e

  • Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2015). Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci Rep 4:4043. https://doi.org/10.1038/srep04043

  • Machado TC, Lansarin MA, Ribeiro CS (2015) Wastewater remediation using a spiral shaped reactor for photochemical reduction of hexavalent chromium. Photochem Photobiol Sci 14(3):501–505

    Article  CAS  Google Scholar 

  • Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

  • Manassero A, Satuf ML, Alfano OM (2013). Evaluation of UV and visible light activity of TiO2 catalysts for water remediation. Chem Eng J 225:378–386. https://doi.org/10.1016/j.cej.2013.03.097

  • Manassero A, Satuf ML, Alfano OM (2017). Photocatalytic reactors with suspended and immobilized TiO2: comparative efficiency evaluation. Chem Eng J 326:29–36. https://doi.org/10.1016/j.cej.2017.05.087

  • Manna G, Bose R, Pradhan N (2014). Photocatalytic Au-Bi2S3 heteronanostructures. Angew Chem Int Ed 53:6743–6746. https://doi.org/10.1002/anie.201402709

  • Marinho BA, Djellabi R, Cristóvão RO, Loureiro JM, Boaventura RAR, Dias MM, Lopes JCB, Vilar VJP (2017). Intensification of heterogeneous TiO2 photocatalysis using an innovative micro–meso-structured-reactor for Cr(VI) reduction under simulated solar light. Chem Eng J 318:76–88. https://doi.org/10.1016/j.cej.2016.05.077

  • Maučec D, Šuligoj A, Ristić A, Dražić G, Pintar A, Tušar NN (2017) Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catal Today 310:32–41. https://doi.org/10.1016/j.cattod.2017.05.061

    Article  CAS  Google Scholar 

  • Mazzolini P, Russo V, Casari CS, Hitosugi T, Nakao S, Hasegawa T, Li Bassi A (2016) Vibrational-electrical properties relationship in donor-doped TiO2by Raman spectroscopy. J Phys Chem C 120:18878–18886. https://doi.org/10.1021/acs.jpcc.6b05282

    Article  CAS  Google Scholar 

  • Mei S, Gao J, Zhang Y et al (2017) Enhanced visible light photocatalytic hydrogen evolution over porphyrin hybridized graphitic carbon nitride. J Colloid Interface Sci 506:58–65. https://doi.org/10.1016/j.jcis.2017.07.030

    Article  CAS  Google Scholar 

  • Meng Z-D, Choi J-G, Park J-Y et al (2011). Review for fullerene materials enhanced TiO2 photocatalysis. J Photocatal Sci 2:29–38.

  • MiarAlipour S, Friedmann D, Scott J, Amal R (2018). TiO2/porous adsorbents: recent advances and novel applications. J Hazard Mater 341:404–423

  • Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping. Jpn J Appl Phys 40:L561–L563

    Article  CAS  Google Scholar 

  • Motegh M, Cen J, Appel PW, van Ommen JR, Kreutzer MT (2012) Photocatalytic-reactor efficiencies and simplified expressions to assess their relevance in kinetic experiments. Chem Eng J 207–208:607–615. https://doi.org/10.1016/j.cej.2012.07.023

    Article  CAS  Google Scholar 

  • Mozia S (2010) Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep Purif Technol 73:71–91. https://doi.org/10.1016/j.seppur.2010.03.021

    Article  CAS  Google Scholar 

  • Nakata K, Fujishima A (2012). TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem Rev 13:169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

  • Nguyen-Phan TD, Pham VH, Shin EW, Pham HD, Kim S, Chung JS, Kim EJ, Hur SH (2011) The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J 170:226–232. https://doi.org/10.1016/j.cej.2011.03.060

    Article  CAS  Google Scholar 

  • Nidheesh PV (2017). Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. Environ Sci Pollut Res, 24: 27047. https://doi.org/10.1007/s11356-017-0481-5

  • O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  • Ohtani B (2008) Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem Lett 37:216–229. https://doi.org/10.1246/cl.2008.216

    Article  CAS  Google Scholar 

  • Ohtani B (2010) Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J Photochem Photobiol C: Photochem Rev 11:157–178

    Article  CAS  Google Scholar 

  • Ohtani B (2013) Titania photocatalysis beyond recombination: a critical review. Catalysts 3:942–953. https://doi.org/10.3390/catal3040942

    Article  CAS  Google Scholar 

  • Ohtani B (2014) Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics. Phys Chem Chem Phys 16:1788–1797. https://doi.org/10.1039/c3cp53653j

    Article  CAS  Google Scholar 

  • Ohtani B, Ogawa Y, Nishimoto S (1997) Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J Phys Chem B 101:3746–3752. https://doi.org/10.1021/jp962702+

    Article  CAS  Google Scholar 

  • Ola O, Maroto-valer MM (2015). Photochemistry reviews review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J Photochem Photobiol C: Photochem Rev 24:16–42. https://doi.org/10.1016/j.jphotochemrev.2015.06.001

  • Pan L, Zou J-J, Zhang X, Wang L (2011) Water-Mediated Promotion of Dye Sensitization of TiO under Visible Light. J Am Chem Soc 133(26):10000–10002

    Article  CAS  Google Scholar 

  • Passalía C, Alfano OM, Brandi RJ (2017). Integral design methodology of photocatalytic reactors for air pollution remediation. Molecules, 22(6): 945. https://doi.org/10.3390/molecules22060945

  • Passalía C, Nocetti E, Alfano O, Brandi R (2017). Coated mesh photocatalytic reactor for air treatment applications: comparative study of support materials. Environ Sci Pollut Res 24:6382–6389. https://doi.org/10.1007/s11356-016-7057-7

  • Pattnaik SP, Behera A, Martha S et al (2018) Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles. J Nanopart Res 20:10. https://doi.org/10.1007/s11051-017-4110-5

    Article  CAS  Google Scholar 

  • Paz Y (2010) Application of TiO2 photocatalysis for air treatment: patents’ overview. Appl Catal B Environ 99:448–460

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  • Perdew JP (2009) Density functional theory and the band gap problem. Int J Quantum Chem 28:497–523. https://doi.org/10.1002/qua.560280846

    Article  Google Scholar 

  • Qi D, Lu L, Xi Z, Wang L, Zhang J (2014). Enhanced photocatalytic performance of TiO2 based on synergistic effect of Ti3+ self-doping and slow light effect. Appl Catal B Environ 160–161:621–628. https://doi.org/10.1016/j.apcatb.2014.06.020

  • Rajeswari R, Kanmani S (2009) TiO 2 -based heterogeneous photocatalytic water treatment combined with ozonation. Iran J Environ Heal Sci Eng 6:61–66

    CAS  Google Scholar 

  • Ratova M, Klaysri R, Praserthdam P, Kelly PJ (2017) Pulsed DC magnetron sputtering deposition of crystalline photocatalytic titania coatings at elevated process pressures. Mater Sci Semicond Process 71:188–196. https://doi.org/10.1016/j.mssp.2017.07.028

    Article  CAS  Google Scholar 

  • Ratova M, Klaysri R, Praserthdam P, Kelly PJ (2018) Visible light active photocatalytic C-doped titanium dioxide films deposited via reactive pulsed DC magnetron co-sputtering: properties and photocatalytic activity. Vacuum 149:214–224

    Article  CAS  Google Scholar 

  • Ratova M, Marcelino RBP, De Souza PP et al (2017) Reactive magnetron sputter deposition of bismuth tungstate coatings for water treatment applications under natural sunlight. Catalysts, 7(10): 283. https://doi.org/10.3390/catal7100283

  • Ajay K. Ray (2009). Photocatalytic reactor configurations for water purification: experimentation and modeling. Editor(s): Hugo I de Lasa, Benito Serrano Rosales, Advances in Chemical Engineering. Academic Press, 36: 145–184. https://doi.org/10.1016/S0065-2377(09)00405-0

  • Reddy PAK, Reddy PVL, Kwon E, Kim KH, Akter T, Kalagara S (2016) Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ Int 91:94–103. https://doi.org/10.1016/j.envint.2016.02.012

    Article  CAS  Google Scholar 

  • Reis NM, Li Puma G (2015) A novel microfluidic approach for extremely fast and efficient photochemical transformations in fluoropolymer microcapillary films. Chem Commun 51:8414–8417. https://doi.org/10.1039/c5cc01559f

    Article  CAS  Google Scholar 

  • Ribeiro MCM, Amorim CC, Moreira RFPM, Oliveira LCA, Henriques AB, Leão MMD (2018) Development of Fe/Nb-based solar photocatalysts for water treatment: impact of different synthesis routes on materials properties. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-2006-2

  • Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ Int 75:33–51. https://doi.org/10.1016/j.envint.2014.10.027

    Article  CAS  Google Scholar 

  • Rivas G, Carra I, García Sánchez JL, Casas López JL, Malato S, Sánchez Pérez JA (2015) Modelling of the operation of raceway pond reactors for micropollutant removal by solar photo-Fenton as a function of photon absorption. Appl Catal B Environ 178:210–217. https://doi.org/10.1016/j.apcatb.2014.09.015

    Article  CAS  Google Scholar 

  • Robert D, Keller N, Selli E (2017) Environmental photocatalysis and photochemistry for a sustainable world: a big challenge. Environ Sci Pollut Res 24:12503–12505. https://doi.org/10.1007/s11356-017-8935-3

    Article  Google Scholar 

  • Rtimi S, Sanjines R, Pulgarin C, Houas A, Lavanchy JC, Kiwi J (2013) Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: implications of the interfacial charge transfer (IFCT). J Hazard Mater 260:860–868. https://doi.org/10.1016/j.jhazmat.2013.06.019

    Article  CAS  Google Scholar 

  • Rtimi S, Giannakis S, Pulgarin C (2017) Self-Sterilizing Sputtered Films for Applications in Hospital Facilities. Molecules 22(7):1074

    Article  Google Scholar 

  • Russo D, Spasiano D, Vaccaro M, Andreozzi R, Li Puma G, Reis NM, Marotta R (2016a) Direct photolysis of benzoylecgonine under UV irradiation at 254nm in a continuous flow microcapillary array photoreactor. Chem Eng J 283:243–250. https://doi.org/10.1016/j.cej.2015.07.061

    Article  CAS  Google Scholar 

  • Russo D, Spasiano D, Vaccaro M, Cochran KH, Richardson SD, Andreozzi R, Li Puma G, Reis NM, Marotta R (2016b). Investigation on the removal of the major cocaine metabolite (benzoylecgonine) inwater matrices by UV254/H2O2process by using a flow microcapillary film array photoreactor as an efficient experimental tool. Water Res 89:375–383. https://doi.org/10.1016/j.watres.2015.11.059

  • Saran S, Kamalraj G, Arunkumar P, Devipriya SP (2016) Pilot scale thin film plate reactors for the photocatalytic treatment of sugar refinery wastewater. Environ Sci Pollut Res 23:17730–17741. https://doi.org/10.1007/s11356-016-6964-y

    Article  CAS  Google Scholar 

  • Sasikala R, Shirole A, Sudarsan V, Sakuntala T, Sudakar C, Naik R, Bharadwaj SR (2009). Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route: photocatalytic activity for hydrogen generation. Int J Hydrog Energy 34:3621–3630. https://doi.org/10.1016/j.ijhydene.2009.02.085

  • Satuf ML, Brandi RJ, Cassano AE, Alfano OM (2007) Scaling-up of slurry reactors for the photocatalytic degradation of 4-chlorophenol. Catal Today 129:110–117. https://doi.org/10.1016/j.cattod.2007.06.056

    Article  CAS  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  • Schultz DM, Yoon TP (2014) Solar synthesis: prospects in visible light photocatalysis. Science 343(6174):1239176

    Article  Google Scholar 

  • Seddigi ZS, Gondal MA, Baig U, Ahmed SA, Abdulaziz MA, Danish EY, Khaled MM, Lais A (2017). Facile synthesis of light harvesting semiconductor bismuth oxychloride nano photo-catalysts for efficient removal of hazardous organic pollutants. PLoS One 12:1–19. https://doi.org/10.1371/journal.pone.0172218

  • Shaham-Waldmann N, Paz Y (2016). Away from TiO2: a critical minireview on the developing of new photocatalysts for degradation of contaminants in water. Mater Sci Semicond Process 42:72–80

  • Shi J, Kuwahara Y, An T, Yamashita H (2017). The fabrication of TiO2 supported on slag-made calcium silicate as low-cost photocatalyst with high adsorption ability for the degradation of dye pollutants in water. Catal Today 281:21–28. https://doi.org/10.1016/j.cattod.2016.03.039

  • Singh S, Mahalingam H, Singh PK (2013) Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl Catal A Gen 462:178–195. https://doi.org/10.1016/j.apcata.2013.04.039

    Article  CAS  Google Scholar 

  • Sivagami K, Ravi Krishna R, Swaminathan T (2014) Photo catalytic degradation of pesticides in immobilized bead photo reactor under solar irradiation. Sol Energy 103:488–493

    Article  CAS  Google Scholar 

  • Spasiano D, Marotta R, Malato S, Fernandez-Ibañez P, di Somma I (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B Environ 170–171:90–123. https://doi.org/10.1016/j.apcatb.2014.12.050

    Article  CAS  Google Scholar 

  • Straathof NJW, Su Y, Hessel V, Noël T (2016) Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors. Nat Protoc 11:10–21. https://doi.org/10.1038/nprot.2015.113

    Article  CAS  Google Scholar 

  • Strunk J, Bañares MA, Wachs IE (2017) Vibrational spectroscopy of oxide overlayers. Top Catal 60:1577–1617. https://doi.org/10.1007/s11244-017-0841-x

    Article  CAS  Google Scholar 

  • Su TL, Chiou CS, Chen HW (2012) Preparation, photocatalytic activity, and recovery of magnetic photocatalyst for decomposition of benzoic acid. Int J Photoenergy 2012:1–8. https://doi.org/10.1155/2012/909678

    Article  CAS  Google Scholar 

  • Suave J, Amorim SM, Ângelo J, Andrade L, Mendes A, Moreira RFPM (2017). TiO2 /reduced graphene oxide composites for photocatalytic degradation in aqueous and gaseous medium. J Photochem Photobiol A Chem 348:326–336. https://doi.org/10.1016/j.jphotochem.2017.08.064

  • Sun H, Wang S, Ang HM, Tadé MO, Li Q (2010) Halogen element modified titanium dioxide for visible light photocatalysis. Chem Eng J 162:437–447

    Article  CAS  Google Scholar 

  • Sun H, Zhou G, Wang Y, Suvorova A, Wang S (2014). A new metal-free carbon hybrid for enhanced photocatalysis. ACS Appl Mater Interfaces 6:16745–16754. https://doi.org/10.1021/am503820h

  • Takanabe K (2017) Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal 7:8006–8022. https://doi.org/10.1021/acscatal.7b02662

    Article  CAS  Google Scholar 

  • Tan HL, Denny F, Hermawan M, Wong RJ, Amal R, Ng YH (2017). Reduced graphene oxide is not a universal promoter for photocatalytic activities of TiO2. J Mater 3:51–57. https://doi.org/10.1016/j.jmat.2016.12.002

  • Tolosana-Moranchel A, Carbajo J, Faraldos M, Bahamonde A (2017). Solar-assisted photodegradation of isoproturon over easily recoverable titania catalysts. Environ Sci Pollut Res 24:7821–7828. https://doi.org/10.1007/s11356-017-8475-x

  • Tong L, Iwase A, Nattestad A, Bach U, Weidelener M, Götz G, Mishra A, Bäuerle P, Amal R, Wallace GG, Mozer AJ (2012). Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device. Energy Environ Sci 5:9472. https://doi.org/10.1039/c2ee22866a

  • Toumazatou A, Arfanis MK, Pantazopoulos P-A, Kontos AG, Falaras P, Stefanou N, Likodimos V (2017) Slow-photon enhancement of dye sensitized TiO photocatalysis. Mater Lett 197:123–126

    Article  CAS  Google Scholar 

  • Vaiano V, Sacco O, Pisano D, Sannino D, Ciambelli P (2015) From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chem Eng Sci 137:152–160. https://doi.org/10.1016/j.ces.2015.06.023

    Article  CAS  Google Scholar 

  • Van Gerven T, Mul G, Moulijn J, Stankiewicz A (2007) A review of intensification of photocatalytic processes. Chem Eng Process Process Intensif 46:781–789. https://doi.org/10.1016/j.cep.2007.05.012

    Article  CAS  Google Scholar 

  • Verbruggen SW (2015). TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J Photochem Photobiol C: Photochem Rev 24:64–82

  • Wachs IE (2005) Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal Today 100(1-2):79–94

    Article  CAS  Google Scholar 

  • Wang Y, Hong J, Zhang W, Xu R (2013) Carbon nitride nanosheets for photocatalytic hydrogen evolution: remarkably enhanced activity by dye sensitization. Catal Sci Technol 3(7):1703

    Article  CAS  Google Scholar 

  • Watson S, Scott J, Beydoun D, Amal R (2005) Studies on the preparation of magnetic photocatalysts. J Nanopart Res 7:691–705

    Article  CAS  Google Scholar 

  • Wei P, Yang Q, Guo L (2009) Bismuth oxyhalide compounds as photocatalysts. Prog Chem 21:1734–1741

    CAS  Google Scholar 

  • Xing M, Fang W, Nasir M, Ma Y, Zhang J, Anpo M (2013). Self-doped Ti3+−enhanced TiO2 nanoparticles with a high-performance photocatalysis. J Catal 297:236–243. https://doi.org/10.1016/j.jcat.2012.10.014

  • Xu C, Zhao XS, Rangaiah GP (2013) Performance analysis of ultraviolet water disinfection reactors using computational fluid dynamics simulation. Chem Eng J 221:398–406. https://doi.org/10.1016/j.cej.2013.01.108

    Article  CAS  Google Scholar 

  • Yan X, Ohno T, Nishijima K, Abe R, Ohtani B (2006) Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem Phys Lett 429:606–610. https://doi.org/10.1016/j.cplett.2006.08.081

    Article  CAS  Google Scholar 

  • Yan X, Yuan K, Lu N, Xu H, Zhang S, Takeuchi N, Kobayashi H, Li R (2017). The interplay of sulfur doping and surface hydroxyl in band gap engineering: mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification. Appl Catal B Environ 218:20–31. https://doi.org/10.1016/j.apcatb.2017.06.022

  • Ye T, Chen W, Xu H, Geng N, Cai Y (2018) Preparation of TiO /graphene composite with appropriate N-doping ratio for humic acid removal. J Mater Sci 53(1):613–625

    Article  CAS  Google Scholar 

  • Yoon TP, Ischay MA, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532. https://doi.org/10.1038/nchem.687

    Article  CAS  Google Scholar 

  • Zhang X, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76:046401. https://doi.org/10.1088/0034-4885/76/4/046401

    Article  CAS  Google Scholar 

  • Zhang Z, Hedhili MN, Zhu H, Wang P (2013). Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys Chem Chem Phys 15:15637. https://doi.org/10.1039/c3cp52759j

  • Zhang G, Kim G, Choi W (2014) Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT): an alternative approach to solar activation of titania. Energy Environ Sci 7:954–966. https://doi.org/10.1039/c3ee43147a

    Article  CAS  Google Scholar 

  • Zhang KL, Liu CM, Huang FQ et al (2006) Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B Environ 68:125–129. https://doi.org/10.1016/j.apcatb.2006.08.002

    Article  CAS  Google Scholar 

  • Zhang BLW, Wang YJ, Cheng HY et al (2009). Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts. Adv Mater 21:1286–1290. https://doi.org/10.1002/adma.200801354

  • Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G (2017) Design and scaling up of microchemical systems: a review. Annu Rev Chem Biomol Eng 8:285–305. https://doi.org/10.1146/annurev-chembioeng-060816-101443

    Article  Google Scholar 

  • Zhang X, Zhang L (2010) Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: the case of BiOI. J Phys Chem C 114:18198–18206. https://doi.org/10.1021/jp105118m

    Article  CAS  Google Scholar 

  • Zhang L, Zhu Y (2012) A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts. Catal Sci Technol 2:694. https://doi.org/10.1039/c2cy00411a

    Article  CAS  Google Scholar 

  • Zhao G, Liu SW, Lu QF et al (2011) Preparation of Bi2WO6 by electrospinning: researching their synthesis mechanism and photocatalytic activity. J Clust Sci 22:621–631. https://doi.org/10.1007/s10876-011-0403-5

  • Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38:645–654. https://doi.org/10.1016/S0360-1323(02)00212-3

    Article  Google Scholar 

  • Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132:11856–11857. https://doi.org/10.1021/ja103843d

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the FAPEMIG, CAPES, and CPNq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila C. Amorim.

Additional information

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcelino, R.B.P., Amorim, C.C. Towards visible-light photocatalysis for environmental applications: band-gap engineering versus photons absorption—a review. Environ Sci Pollut Res 26, 4155–4170 (2019). https://doi.org/10.1007/s11356-018-3117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3117-5

Keywords

Navigation