Skip to main content

Advertisement

Log in

Future intensification of summer hypoxia in the tidal Garonne River (SW France) simulated by a coupled hydro sedimentary-biogeochemical model

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Projections for the next 50 years predict a widespread distribution of hypoxic zones in the open and coastal ocean due to environmental and global changes. The Tidal Garonne River (SW France) has already experienced few episodic hypoxic events. However, predicted future climate and demographic changes suggest that summer hypoxia could become more severe and even permanent near the city of Bordeaux in the next few decades. A 3D model, which couples hydrodynamic, sediment transport, and biogeochemical processes, is applied to assess the impact of factors submitted to global and regional climate changes on oxygenation in the turbidity maximum zone (TMZ) of the Tidal Garonne River during low-discharge periods. The model simulates an intensification of summer hypoxia with an increase in temperature, a decrease in river flow or an increase in the local population, but not with sea level rise, which has a negligible impact on dissolved oxygen. Different scenarios were tested by combining these different factors according to the regional projections for 2050 and 2100. All the simulations showed a trend toward a spatial and temporal extension of summer hypoxia that needs to be considered by local water authorities to impose management strategies to protect the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DO:

dissolved oxygen

DOC:

dissolved organic carbon

OM:

organic matter

POC:

particulate organic carbon

SSC:

suspended sediment concentration

SO:

sewage overflow

TGR:

Tidal Garonne River

TMZ:

turbidity maximum zone

WS:

watershed

WW:

wastewater

WWTP:

wastewater treatment plant

References

  • Abril G, Etcheber H, Le Hir P et al (1999) Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (the Gironde, France). Limnol Oceanogr 44:1304–1315

    Article  CAS  Google Scholar 

  • Allen GP (1972) Étude des processus sédimentaires dans l’estuaire de la Gironde. Université de Bordeaux, Bordeaux

    Google Scholar 

  • Allen GP, Salomon J, Bassoullet P (1980) Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment Geol 26:69–90

    Article  Google Scholar 

  • Ambrose RB, Wool TA, Martin JL (1993) The water quality analysis simulation program, WASP5 part A: model documentation. Development Protection Agency, United States Environmental Protection Agency, Athens

  • Boé J, Habets F (2014) Multi-decadal river flow variations in France. 691–708. https://doi.org/10.5194/hess-18-691-2014

    Article  Google Scholar 

  • Brenon I, Hir P Le (1999) Modelling the turbidity maximum in the seine estuary ( France ): identification of formation. 525–544.

  • Cocco V, Joos F, Steinacher M, Frölicher TL, Bopp L, Dunne J, Gehlen M, Heinze C, Orr J, Oschlies A, Schneider B, Segschneider J, Tjiputra J (2013) Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences 10:1849–1868. https://doi.org/10.5194/bg-10-1849-2013

    Article  CAS  Google Scholar 

  • Conley DJ, Carstensen J, Vaquer-Sunyer R, Duarte CM (2009) Ecosystem thresholds with hypoxia. Hydrobiologia 629:21–29. https://doi.org/10.1007/s10750-009-9764-2

    Article  CAS  Google Scholar 

  • Cotovicz LC, Knoppers BA, Brandini N et al (2017) Aragonite saturation state in a tropical coastal embayment dominated by phytoplankton blooms (Guanabara Bay-Brazil). Mar Pollut Bull 129:0–1. https://doi.org/10.1016/j.marpolbul.2017.10.064

    Article  CAS  Google Scholar 

  • Cox TJS, Maris T, Soetaert K, Conley DJ, van Damme S, Meire P, Middelburg JJ, Vos M, Struyf E (2009) A macro-tidal freshwater ecosystem recovering from hypereutrophication: the Schelde case study. Biogeosciences 6:2935–2948. https://doi.org/10.5194/bg-6-2935-2009

    Article  CAS  Google Scholar 

  • Cugier P, Le Hir P (2002) Development of a 3D hydrodynamic model for coastal ecosystem modelling. Application to the plume of the Seine River (France). Estuar Coast Shelf Sci 55:673–695. https://doi.org/10.1006/ecss.2001.0875

    Article  Google Scholar 

  • de Jonge VN, Elliott M, Orive E (2002) Causes , historical development , effects and future challenges of a common environmental problem : eutrophication. In: 1–19

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science (80- ) 321:926–929. https://doi.org/10.1126/science.1156401

    Article  CAS  Google Scholar 

  • Dronkers J (1986) Tidal asymmetry and estuarine morphology. Netherlands J Sea Res 20:117–131. https://doi.org/10.1016/0077-7579(86)90036-0

    Article  Google Scholar 

  • Droop MR (1968) Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J Mar Biol Assoc 48:689–733

    Article  CAS  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085

    Google Scholar 

  • Etcheber H, Taillez A, Abril G, Garnier J, Servais P, Moatar F, Commarieu MV (2007) Particulate organic carbon in the estuarine turbidity maxima of the Gironde, Loire and Seine estuaries: origin and lability. Hydrobiologia 588:245–259. https://doi.org/10.1007/s10750-007-0667-9

    Article  CAS  Google Scholar 

  • Etcheber H, Schmidt S, Sottolichio A, Maneux E, Chabaux G, Escalier JM, Wennekes H, Derriennic H, Schmeltz M, Quéméner L, Repecaud M, Woerther P, Castaing P (2011) Monitoring water quality in estuarine environments: lessons from the MAGEST monitoring program in the Gironde fluvial-estuarine system. Hydrol Earth Syst Sci 15:831–840. https://doi.org/10.5194/hess-15-831-2011

    Article  Google Scholar 

  • Etcheber H, Coupry B, Coynel A et al (2013) Disponibility of surficial continental waters. In: Le Treut H (ed) Impact of climate change in the Aquitaine region. Scientific report., resses Uni. Pessac, p 365

    Google Scholar 

  • Friedrichs CT, Aubrey DG (1988) Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis. Estuar Coast Shelf Sci 27:521–545. https://doi.org/10.1016/0272-7714(88)90082-0

    Article  Google Scholar 

  • Gilbert D, Rabalais NN, Díaz RJ, Zhang J (2010) Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences 7:2283–2296. https://doi.org/10.5194/bg-7-2283-2010

    Article  CAS  Google Scholar 

  • Goosen NK, Kromkamp J, Peene J, van Rijswijk P, van Breugel P (1999) Bacterial and phytoplankton production in the maximum turbidity zone of three European estuaries: the Elbe, Westerschelde and Gironde. J Mar Syst 22:151–171

    Article  Google Scholar 

  • Hagy JD, Boynton WR, Keefe CW, Wood KV (2004) Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow. Estuaries 27:634–658. https://doi.org/10.1007/BF02907650

    Article  CAS  Google Scholar 

  • Howarth RW, Swaney DP, Butler TJ, Marino R (2000) Rapid communication: climatic control on eutrophication of the Hudson river estuary. Ecosystems 3:210–215. https://doi.org/10.1007/s100210000020

    Article  Google Scholar 

  • Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9:18–26. https://doi.org/10.1890/100008

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 1535

  • Jalón-Rojas I, Schmidt S, Sottolichio A (2015) Turbidity in the fluvial Gironde estuary (Southwest France) based on 10-year continuous monitoring: sensitivity to hydrological conditions. Hydrol Earth Syst Sci 19:2805–2819. https://doi.org/10.5194/hess-19-2805-2015

    Article  Google Scholar 

  • Jalón-Rojas I, Sottolichio A, Hanquiez V, Fort A, Schmidt S (2018) To what extent multidecadal changes in morphology and fluvial discharge impact tide in a convergent (turbid) tidal river. J Geophys Res Oceans 123:3241–3258. https://doi.org/10.1002/2017JC013466

    Article  Google Scholar 

  • Justić D, Bierman VJ Jr, Scavia D, Hetland RD (2007) Forecasting gulf’s hypoxia : the next 50 years ? Estuar Coasts 30:791–801

    Article  Google Scholar 

  • Kemp WM, Testa JM, Conley DJ, Gilbert D, Hagy JD (2009) Coastal hypoxia responses to remediation. Biogeosci Discuss 6:6889–6948. https://doi.org/10.5194/bgd-6-6889-2009

    Article  Google Scholar 

  • Lajaunie-Salla K, Wild-Allen K, Sottolichio A, Thouvenin B, Litrico X, Abril G (2017) Impact of urban effluents on summer hypoxia in the highly turbid Gironde estuary , applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes. J Mar Syst 174:89–105. https://doi.org/10.1016/j.jmarsys.2017.05.009

    Article  Google Scholar 

  • Lanoux A, Etcheber H, Schmidt S, Sottolichio A, Chabaud G, Richard M, Abril G (2013) Factors contributing to hypoxia in a highly turbid, macrotidal estuary (the Gironde, France). Environ Sci Process Impacts 15:585–595. https://doi.org/10.1039/c2em30874f

    Article  CAS  Google Scholar 

  • Lanoux A, Lepage M, DeWatteville J, Jatteau P, Schmidt S, Sottolichio A (2014) Effects of hypoxia on the fish and crustacean fauna in the Gironde Estuary. In: The 46th International Liege Colloquium, Liege, Belgium. https://doi.org/10.13140/2.1.1172.4165

  • Le Treut H (2013) Impact of climate change in the Aquitaine region. Scientific Report., Presses Un. Pessac

  • Lehmann A, Hinrichsen HH, Getzlaff K, Myrberg K (2014) Quantifying the heterogeneity of hypoxic and anoxic areas in the Baltic Sea by a simplified coupled hydrodynamic-oxygen consumption model approach. J Mar Syst 134:20–28. https://doi.org/10.1016/j.jmarsys.2014.02.012

    Article  Google Scholar 

  • Lemaire E, Abril G, De Wit R, Etcheber H (2002) Effet de la turbidité sur la dégradation des pigments phytoplanctoniques dans l’estuaire de la Gironde. Geoscience 334:251–258

    Article  CAS  Google Scholar 

  • Li D, Zhang J, Huang D et al (2002) Oxygen depletion off the Changjiang (Yangtze River) estuary. Sci China Ser D 45:1137. https://doi.org/10.1360/02yd9110

    Article  CAS  Google Scholar 

  • Meire L, Soetaert KER, Meysman FJR (2013) Impact of global change on coastal oxygen dynamics and risk of hypoxia. 2633–2653. https://doi.org/10.5194/bg-10-2633-2013

    Article  CAS  Google Scholar 

  • Naqvi SWA, Bange HW, Farías L, Monteiro PMS, Scranton MI, Zhang J (2010) Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7:2159–2190. https://doi.org/10.5194/bg-7-2159-2010

    Article  CAS  Google Scholar 

  • Peña M, Katsev S, Oguz T, Gilbert D (2010) Modeling dissolved oxygen dynamics and coastal hypoxia: a review. Biogeosciences 6:9195–9256. https://doi.org/10.5194/bgd-6-9195-2009

    Article  Google Scholar 

  • Rabalais NN, Levin LA, Turner RE et al (2010) Dynamics and distribution of natural and human-caused coastal hypoxia. Biogeosciences 7:585–619. https://doi.org/10.5194/bgd-6-9359-2009

    Article  CAS  Google Scholar 

  • Robins PE, Skov MW, Lewis MJ, Giménez L, Davies AG, Malham SK, Neill SP, McDonald JE, Whitton TA, Jackson SE, Jago CF (2016) Impact of climate change on UK estuaries: a review of past trends and potential projections. Estuar Coast Shelf Sci 169:119–135. https://doi.org/10.1016/j.ecss.2015.12.016

    Article  Google Scholar 

  • Schmidt S, Etcheber H, Sottolichio A, Castaing P (2016) Le réseau MAGEST: bilan de 10 ans de suivi haute-fréquence de la qualité des eaux de l’estuaire de la Gironde. In: Schmitt FG, Lefevre A (eds) Mesures haute résolution dans l’environnement marin côtier. Presses du CNRS

  • Schmidt S, Bernard C, Escalier J-M, Etcheber H, Lamouroux M (2017) Assessing and managing the risks of hypoxia in transitional waters: a case study in the tidal Garonne River (south-West France). Environ Sci Pollut Res 24:3251–3259. https://doi.org/10.1007/s11356-016-7654-5

    Article  CAS  Google Scholar 

  • Seneviratne SI, Donat MG, Mueller B, Alexander LV (2014) No pause in the increase of hot temperature extremes. Nat Clim Chang 4:161–163. https://doi.org/10.1038/nclimate2145

    Article  Google Scholar 

  • Skerratt J, Wild-Allen K, Rizwi F, Whitehead J, Coughanowr C (2013) Use of a high resolution 3D fully coupled hydrodynamic, sediment and biogeochemical model to understand estuarine nutrient dynamics under various water quality scenarios. Ocean Coast Manag 83:52–66. https://doi.org/10.1016/j.ocecoaman.2013.05.005

    Article  Google Scholar 

  • Soetaert K, Middelburg JJ, Heip C, Meire P, van Damme S, Maris T (2006) Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, the Netherlands). Limnol Oceanogr 51:409–423

    Article  CAS  Google Scholar 

  • Sottolichio A, Le Hir P, Castaing P (2000) Modeling mechanisms for the stability of the turbidity maximum in the Gironde estuary, France. Proc Mar Sci 3:373–386

    Article  Google Scholar 

  • Talke SA, Swart HE, de Jonge VN (2009) An idealized model and systematic process study of oxygen depletion in highly turbid estuaries. Estuar Coasts 32:602–620. https://doi.org/10.1007/s12237-009-9171-y

    Article  CAS  Google Scholar 

  • Testa JM, Li Y, Lee YJ, Li M, Brady DC, di Toro DM, Kemp WM, Fitzpatrick JJ (2014) Quantifying the effects of nutrient loading on dissolved O2 cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic–biogeochemical model. J Mar Syst 139:139–158. https://doi.org/10.1016/j.jmarsys.2014.05.018

    Article  Google Scholar 

  • Thouvenin B, Le Hir P, Romana LA (1994) Dissolved oxygen model in the Loire Estuary. In: Dyer KR, Orth RJ (eds) Changes in fluxes in estuaries: implications from science to management. Olsen & Olsen, Fredensburg, pp 169–178

  • Tinsley D (1998) The Thames estuary: a history of the impact of humans on the environment and a description of the current approach to environmental management. In: Attrill M (ed) A rehabilitated estuarine ecosystem SE - 2. Springer US, New York, pp 5–26

    Chapter  Google Scholar 

  • Uncles RJ, Elliott RDC, Weston SA (1985) Observed fluxes of water, salt and suspended sediment in a partly mixed estuary. Estuar Coast Shelf Sci 20:147–167. https://doi.org/10.1016/0272-7714(85)90035-6

    Article  CAS  Google Scholar 

  • Van Maanen B, Sottolichio A (2018) Hydro- and sediment dynamics in the Gironde estuary (France): sensitivity to seasonal variations in river inflow and sea level rise. Cont Shelf Res 165:37–50. https://doi.org/10.1016/j.csr.2018.06.001

    Article  Google Scholar 

  • Vanderborght J-P, Folmer IM, Aguilera DR, Uhrenholdt T, Regnier P (2007) Reactive-transport modelling of C, N, and O2 in a river–estuarine–coastal zone system: application to the Scheldt estuary. Mar Chem 106:92–110. https://doi.org/10.1016/j.marchem.2006.06.006

    Article  CAS  Google Scholar 

  • Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci U S A 105:15452–15457. https://doi.org/10.1073/pnas.0803833105

    Article  Google Scholar 

  • Veyssy E (1998) Transferts de matière organiques das bassins versants aux estuaires de la Gironde et de l’Adour (Sud-Ouest de la France). Université de Bordeaux, Bordeaux

    Google Scholar 

  • Wild-Allen K, Herzfeld M, Thompson P a, Thompson PA, Rosebrock U, Parslow J, Volkman JK (2009) Applied coastal biogeochemical modelling to quantify the environmental impact of fish farm nutrients and inform managers. J Mar Syst 81:134–147. https://doi.org/10.1016/j.jmarsys.2009.12.013

    Article  Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313

    Article  Google Scholar 

  • Winterwerp JC, Wang ZB, van Braeckel A, et al (2013) Man-induced regime shifts in small estuaries---II: a comparison of rivers. Ocean Dyn 63:1293–1306. https://doi.org/10.1007/s10236-013-0663-8

    Article  Google Scholar 

  • Zhao W, Zhu X, Sun X, Shu Y, Li Y (2015) Water quality changes in response to urban expansion: spatially varying relations and determinants. Environ Sci Pollut Res 22:16997–17011. https://doi.org/10.1007/s11356-015-4795-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the MAGEST network for the availability of data and to the SGAC and Bordeaux Metropole for providing urban effluent data and fruitful discussions.

Funding

This study was funded by the Aquitaine Region (DIAGIR project) and LyRE (SUEZ research center) who co-sponsored a PhD grant to K. Lajaunie-Salla. This work was also supported by the Cluster of Excellence COTE at the Université de Bordeaux (ANR-10-LABX-45). This work was supported by the Avakas cluster resources of the Mésocentre de Calcul Intensif Aquitain (MCIA) of the University of Bordeaux.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katixa Lajaunie-Salla.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lajaunie-Salla, K., Sottolichio, A., Schmidt, S. et al. Future intensification of summer hypoxia in the tidal Garonne River (SW France) simulated by a coupled hydro sedimentary-biogeochemical model. Environ Sci Pollut Res 25, 31957–31970 (2018). https://doi.org/10.1007/s11356-018-3035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3035-6

Keywords

Navigation