Skip to main content
Log in

Biofilm architecture on different substrates of an Oculatella subterranea (Cyanobacteria) strain isolated from Pompeii archaeological site (Italy)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Cyanobacterium Oculatella subterranea Zammit, Billi, Albertano inhabits hypogea and stone caves and is a pioneer of different stone substrata. In this study, a strain isolated from the House of Marco Castricio (Archaeological Park of Pompeii, Italy) was identified by a polyphasic approach and used for an in vitro colonization test to verify the influence of the substrate on the biofilm architecture. Fine structure of O. subterranea microbial mats was revealed as well as filaments orientation toward light source. This aim has been achieved through confocal laser scanner microscope microscopy and computer image analysis. Moreover, bioreceptivity of five different substrates, commonly retrieved in archaeological sites of Campania, was assessed for O. subterranea. Our results show that the three-dimensional structure of O. subterranea microbial mats is poorly affected by physical and geochemical features of substrates: in fact, the porous architecture of its biofilm was preserved, independently of the materials. On the other hand, the area/perimeter ratio relative to the O. subterranea growth on tuff, brick, and porphyry showed significant differences, indicating dissimilar levels of bioreceptivity of the three substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam JP (2003) L’arte di costruire presso i romani. Longanesi, Milano

  • Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, Seung HS (2017) Trainable Weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33(15):2424–2426

    Article  Google Scholar 

  • ASTM D4404-18 (2018) Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. ASTM International, West Conshohocken, PA

  • Baveye P (2002) Comment on “Evaluation of biofilm image thresholding methods”. Water Res 36:805–806

    Article  CAS  Google Scholar 

  • Beyenala H, Donovana C, Lewandowski Z, Harkin G (2004) Three-dimensional biofilm structure quantification. J Microbiol Methods 59:395–413

    Article  CAS  Google Scholar 

  • Bruno L, Valle V (2017) Effect of white and monochromatic lights on cyanobacteria and biofilms from roman catacombs. Int Biodeterior Biodegrad 123:286–295

    Article  Google Scholar 

  • Bruno L, Quici L, Ficorella I, Valentini F (2014) Nanographene oxide: a new material for a non-invasive and non-destructive strategy to remove biofilms from rock surfaces. In: Saiz-Jimenez C (ed) The conservation of subterranean cultural heritage. Taylor & Francis Group, pp 125–131

  • Characklis WG, McFeters GA, Marshall KC (1990) Physiological ecology in biofilm systems. In: Characklis WG, Marshall KC (eds) Biofilms. John Wiley & Sons, pp 341–394

  • Cnudde V, Jacobs P (2003) Preliminary results of X-ray microtomography applied in conservation and restoration of natural building stones. In: Otani J, Obara Y (eds) Proceedings of the International Workshop on X-ray CT for Geomaterials, “GeoX2003”, X-ray CT for Geomaterials, Soils, Concrete, Rocks. Kumamoto, Japan: AA Balkema, Publishers, 6–7 November, pp 363–371

  • Colella A, Calcaterra D, Cappelletti P, Langella A, Papa L, de Gennaro M (2009) I tufi zeolitizzati nell’architettura della Campania. In: Cuzzolin M (ed) Diagnostica per la tutela e la conservazione dei materiali nel costruito. Atti del Convegno Diacomast, Belvedere di S. Leucio (CE), 21–22 Febbraio 2008, 1:327–341

  • Colella A, Di Benedetto C, Calcaterra D, Cappelletti P, D’Amore M, Di Martire D, Graziano SF, Papa L, de Gennaro M, Langella A (2017) The Neapolitan Yellow Tuff: an outstanding example of heterogeneity. Constr Build Mater 136(1):361–373

    Article  Google Scholar 

  • Crivellari F, D’Agostino C, Fedrizzi F, Filz C, Zampedri G (2008) Catalogo ragionato, in: Atlante della pietra trentina. Antichi e nuovi percorsi, guida all’utilizzo. Camera di Commercio I.A.A. di Trento, pp 81–174

  • Curtis TP, Sloan WT (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microbiol 7(3):221–226

    Article  Google Scholar 

  • Cuzman OA, Tapete D, Fratini F, Mazzei B, Riminesi C, Tiano P (2014) Assessing and facing the biodeteriogenic presence developed in the Roman Catacombs of Santi Marco, Marcelliano e Damaso, Italy. Eur J Sci Theol 10(3):185–197

    Google Scholar 

  • De Bonis A, Grifa C, Cultrone G, De Vita P, Langella A, Morra V (2013) Raw materials for archaeological pottery from the Campania region of Italy: a petrophysical characterization. Geoarchaeology 28:478–503

    Article  Google Scholar 

  • de Gennaro R, Langella A, D’Amore M, Dondi M, Colella A, Cappelletti P, de Gennaro M (2007) Use of zeolite-rich rocks and waste materials for the production of structural lightweight concretes. Appl Clay Sci 41:61–72

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Garcia-Pichel F, Wingard CE, Castenholz RW (1993) Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl Environ Microbiol 59(1):170–176

    CAS  Google Scholar 

  • Gaylarde CC, Gaylarde PM (2005) A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeterior Biodegrad 55(2):131–139

    Article  Google Scholar 

  • Gaylarde CC, Rodríguez CH, Navarro-Noya YE, Ortega-Morales BO (2012) Microbial biofilms on the sandstone monuments of the Angkor Wat complex, Cambodia. Curr Microbiol 64(2):85–92

    Article  CAS  Google Scholar 

  • Guillitte O (1994) Bioreceptivity: a new concept for building ecology studies. Sci Total Environ 167:215–250

    Article  Google Scholar 

  • Guillitte O, Dreesen R (1995) Laboratory chamber studies and petrographical analysis as bioreceptivity assessment tool of building materials. Sci Total Environ 167:365–374

    Article  CAS  Google Scholar 

  • Hermanowicz SW, Schindler U, Wilderer P (1996) Anisotropic morphology and fractal dimensions of biofilms. Water Res 30(3):753–755

    Article  CAS  Google Scholar 

  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407

    Article  CAS  Google Scholar 

  • Hotaling NA, Bharti K, Kriel H, Simon CS Jr (2015) DiameterJ: a validated open source nanofiber diameter measurement tool. Biomaterials 61:327–338

    Article  CAS  Google Scholar 

  • Hsieh P, Pedersen JZ, Albertano P (2013) Generation of reactive oxygen species upon red light exposure of cyanobacteria from Roman hypogea. Int Biodeterior Biodegrad 84:258–265

    Article  CAS  Google Scholar 

  • Hutchens E (2009) Microbial selectivity on mineral surfaces: possible implications for weathering processes. Fungal Biol Rev 23(4):115–121

    Article  Google Scholar 

  • ISO 4287-1 (1984) Surface roughness-terminology: part 1. Surface and its parameters. International Organization for Standardization, Geneva.

  • Karaca Z, Öztürk A, Çolak E (2015) Biofouling of marbles by oxygenic photosynthetic microorganisms. Environ Sci Pollut Res 22:11285–11289

    Article  CAS  Google Scholar 

  • Ketchamand RA, Carlson WD (2001) Acquisition, optimisation and interpretation of X-ray computed tomographic imagery: applications to the geoscience. Comput Geosci UK 27(4):381–400

    Article  Google Scholar 

  • Kuehn M, Hausner M, Bungartz H-J, Wagner M, Wilderer PA, Wuertz S (1998) Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl Environ Microbiol 64(11):4115–4127

    CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Duenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibbon TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Lepanto P, Lecumberry F, Rossello J, Kierbel A (2014) A confocal microscopy image analysis method to measure adhesion and internalization of Pseudomonas aeruginosa multicellular structures into epithelial cells. Mol Cell Probes 28(1):1–5

    Article  CAS  Google Scholar 

  • Liu ZQ (1991) Scale space approach to directional analysis of images. Appl Opt 30(11):1369–1373

    Article  CAS  Google Scholar 

  • Marasco D, Nocerino S, Pinto G, Pollio A, Troisi G, De Natale A (2016) Weathering of a roman mosaic—a biological and quantitative study on in vitro colonization of calcareous tesserae by phototrophic microorganisms. PLoS One 11(10):e0164487

    Article  CAS  Google Scholar 

  • Miller AZ, Dionısio A, Macedo MF (2006) Primary bioreceptivity: a comparative study of different Portuguese lithotypes. Int Biodeterior Biodegrad 57(2):136–142

    Article  CAS  Google Scholar 

  • Miller AZ, Leal N, Laiz L, Rogerio-Candelera MA, RJC S, Dionisio A, Macedo MF, Saiz-Jimenez C (2010) Primary bioreceptivity of limestones used in Southern Europe monuments. In: Smith BJ, Gomez-Heras M, Viles HA, Cassar J (eds) Limestone in the built environment: present day challenges for the preservation of the past. Geological Society, special publications, London, pp 79–92

    Google Scholar 

  • Ollion J, Cochennec J, Loll F, Escudé C, Boudier T (2013) TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29(14):1840–1841

    Article  CAS  Google Scholar 

  • Petroff AP, Sim MS, Maslov A, Krupenin M, Rothman DH, Bosak T (2010) Biophysical basis for the geometry of conical stromatolites. Proc Natl Acad Sci 107(22):9956–9961

    Article  Google Scholar 

  • Pivko D (2003) Natural stones in earth’s history. Acta Geologica Universitatis Comenianae, Bratislava 58:73–86

    Google Scholar 

  • Prieto B, Silva B (2005) Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int Biodeterior Biodegrad 56(4):206–215

    Article  CAS  Google Scholar 

  • Roy A, Tripathy P, Adhikary SP (1997) Epilithic blue-green algae/cyanobacteria from temples of India and Nepal. Presence of ultraviolet sunscreen pigments. Arch Hydrobiol Suppl 120:147–161

    Google Scholar 

  • Salmoiraghi F (1892) Materiali naturali da costruzione. Hoepli, Milano

    Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology-DNA sequence analysis. American Mathematical Society, Providence

    Google Scholar 

  • Turick CE, Berry CJ (2016) Review of concrete biodeterioration in relation to nuclear waste. J Environ Radioact 151(1:12–21

    Article  CAS  Google Scholar 

  • UNI EN 13755 (2008) Metodi di prova per pietre naturali: determinazione dell’assorbimento d’acqua a pressione atmosferica. Ente Nazionale Italiano di Unificazione, Milano

    Google Scholar 

  • UNI EN 1936 (2007) . Ente Nazionale Italiano di Unificazione, Milano

  • Vazquez-Nion D, Silva B, Prieto B (2018) Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms. Sci Total Environ 610-611(1):44–54

    Article  CAS  Google Scholar 

  • Verità M (2014) Technology and deterioration of vitreous mosaic tesserae. Stud Conserv 45(3):65–76

    Google Scholar 

  • Vyas N, Sammons RL, Addison O, Dehghani H, Walmsley AD (2016) A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis. Sci Rep 6:32694

    Article  CAS  Google Scholar 

  • Yang X, Beyenal H, Harkin G, Lewandowski Z (2000) Quantifying biofilm structure using image analysis. J Microbiol Methods 39(2):109–119

    Article  CAS  Google Scholar 

  • Zammit G, Psaila P, Albertano P (2008) An investigation into biodeterioration caused by microbial communities colonising artworks in three maltese Palaeo-Christian catacombs. In: Notea A, Shoef Y (eds) Non-destructive testing, microanalysis and preservation in the conservation of cultural and environmental heritage’ ISAS International Seminars Ltd. 9th International Conference on NDT of Art, Jerusalem Israel, 25–30 May, pp 1–10

  • Zammit G, Billi D, Albertano P (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. Eur J Phycol 47(4):341–354

    Article  Google Scholar 

Download references

Acknowledgments

The authors are particularly grateful for the precious assistance given by Dr. Claudia Di Benedetto for the characterization of lithic substrates. The authors also thank the Archaeological Park of Pompeii and particularly Dr. De Carolis for the kind guidance and support. The authors gratefully acknowledge Benedetto De Fazio for his valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Del Mondo.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Fig. S1

Detail of the five different substrata: brick (A-D), glass paste (E-H), limestone (I-L), NYT (M-P) and porphyry Q-T). Macro photographs (A, E, I, M, Q - scale bar 1 mm), single X-ray image (B, F, J, N, R - scale bar 0.2 mm), 3D reconstruction (C, G, K, O, S - scale bar 2 μm), porosity distribution between 0-280 μm in depth (D, H, L, P, T). (PNG 10835 kb)

High Resolution Image (TIF 52320 kb)

Table S3

(DOCX 13 kb)

Fig. S4

Amount of filament in direction between -90° and +90° on brick (A, B), NYT (C, D) and porphyry (E, F). Scale bar 50 μm (PNG 2164 kb)

High Resolution Image (TIF 6132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Mondo, A., Pinto, G., Carbone, D.A. et al. Biofilm architecture on different substrates of an Oculatella subterranea (Cyanobacteria) strain isolated from Pompeii archaeological site (Italy). Environ Sci Pollut Res 25, 26079–26089 (2018). https://doi.org/10.1007/s11356-018-2643-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2643-5

Keywords

Navigation