Skip to main content

Advertisement

Log in

Antialgal effects of α-linolenic acid on harmful bloom-forming Prorocentrum donghaiense and the antialgal mechanisms

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Harmful algal blooms (HABs) induced by Prorocentrum donghaiense occur frequently and cause a serious threat to the marine ecosystem. In this study, antialgal effects of α-linolenic acid (ALA) that is generally extracted from diverse macroalga on P. donghaiense were investigated. Specifically, the growth, cellular morphology and ultrastructure, reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP), cytochrome C (Cyt-C), and caspase-9,3 activity of untreated and treated P. donghaiense were investigated. The results showed that ALA significantly inhibited the growth of P. donghaiense. Under ALA exposure, the cellular morphology and ultrastructure were damaged. ALA also induced ROS overproduction in the algal cells, decreased MMP, induced Cyt-C release, and activated caspase-9,3, which strongly relates to algal apoptosis. In summary, this study revealed the responses of morphology and physiology of P. donghaiense when exposed under ALA, and shows the potential of biotechnology on controlling P. donghaiense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alamsjah MA, Hirao S, Ishibashi F, Oda T, Fujita Y (2008) Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton. J Appl Phycol 20(5):713–720

    Article  CAS  Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JAM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4):704–726

    Article  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exp Toxicol 21(2):91–97

    Article  CAS  Google Scholar 

  • Das S, Ward LR, Burke C (2008) Prospects of using marine actinobacteria as probiotics in aquaculture. Appl Microbiol Biotechnol 81(3):419–429

    Article  CAS  Google Scholar 

  • El-Kassas HY, Ghobrial MG (2017) Biosynthesis of metal nanoparticles using three marine plant species: anti-algal efficiencies against “ Oscillatoria simplicissima ”. Environ Sci Pollut Res 24(8):1–13

    Article  CAS  Google Scholar 

  • Fleury C, Mignotte B, Vayssière JL (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84(2–3):131–141

    Article  CAS  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 29–60

  • He YY, Häder DP (2002) UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-l-cysteine. J Photochem Photobiol B 66(2):115–124

    Article  CAS  Google Scholar 

  • Hoko Z, Makado PK (2011) Optimization of algal removal process at Morton Jaffray water works, Harare, Zimbabwe. Phys Chem Earth Pt A/B/C 36(14–15):1141–1150

    Article  Google Scholar 

  • Ikawa M (2004) Algal polyunsaturated fatty acids and effects on plankton ecology and other organisms. UNH Center Freshwat Biol Res 6(2):17–44

    Google Scholar 

  • Kuida K (2000) Caspase-9. Int J Biochem Cell Biol 32(2):121–124

    Article  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    Article  CAS  Google Scholar 

  • Liu L, Yan H, Li C, Zhou Y, Zhang TT (2014) Interactions between heavy metal lead and two freshwater algae. Acta Ecol Sin 34(7):1690–1697

    CAS  Google Scholar 

  • Lopes VM, Rita LA, Pedro C, Rui R (2013) Cephalopods as vectors of harmful algal bloom toxins in marine food webs. Marine Drugs 11(9):3381–3409

    Article  CAS  Google Scholar 

  • Lou I, Gong S, Huang X, Liu Y, Mok KM (2013) Coagulation optimization using ferric and aluminum salts for treating high algae and high alkalinity source water in a typical North-China plant. Desalin Water Treat 51(16–18):3361–3370

    Article  CAS  Google Scholar 

  • Lu DD, Goebel J (2001) Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu SP. nov. from the East China Sea. Chin J Oceanol Limnol 19(4):337–344

    Article  Google Scholar 

  • Lu X, Zhou B, Xu L, Liu L, Wang G, Liu X, Tang X (2016) A marine algicidal Thalassospira and its active substance against the harmful algal bloom species Karenia mikimotoi. Appl Microbiol Biotechnol 100(11):5131–5139

    Article  CAS  Google Scholar 

  • Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis 8(2):115–128

    Article  CAS  Google Scholar 

  • Ma Z, Wu M, Lin L, Thring RW, Yu H, Zhang X, Zhao M (2017) Allelopathic interactions between the macroalga Hizikia fusiformis (Harvey) and the harmful blooms-forming dinoflagellate Karenia mikimotoi. Harmful Algae 65:19–26

    Article  Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12(3–5):527–534

    Article  Google Scholar 

  • Park J, Lee J, Choi C (2012) Mitochondrial network determines intracellular ROS dynamics and sensitivity to oxidative stress through switching inter-mitochondrial messengers. PLoS One 6(1):e23211–e23283

    Google Scholar 

  • Pichierri S, Accoroni S, Pezzolesi L, Guerrini F, Romagnoli T, Pistocchi R, Totti C (2017) Allelopathic effects of diatom filtrates on the toxic benthic dinoflagellate Ostreopsis cf. ovata. Mar Environ Res:131

  • Pokrzywinski KL, Tilney CL, Modla S, Caplan JL, Ross J, Warner ME, Coyne KJ (2017) Effects of the bacterial algicide IRI-160AA on cellular morphology of harmful dinoflagellates. Harmful Algae 62:127–135

    Article  CAS  Google Scholar 

  • Rice EL (1984) Natural ecosystems: ecological effects of algal allelopathy. In: Elroy LR (ed) Allelopathy, 2nd edn. Academic Press, Cambridge, pp 189–205

    Chapter  Google Scholar 

  • Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87(7):1157–1180

    Article  CAS  Google Scholar 

  • Tang DL, Di BP, Wei G, Ni IH, Oh IS, Wang SF (2006) Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia 568(1):245–253

    Article  Google Scholar 

  • Wang R, Xiao H, Wang Y, Zhou W, Tang X (2007a) Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on the growth of the red tide microalga Prorocentrum donghaiense under laboratory conditions. J Sea Res 58(3):189–197

    Article  Google Scholar 

  • Wang R, Xiao H, Zhang P, Qu L, Cai H, Tang X (2007b) Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. J Appl Phycol 19(2):109–121

    Article  Google Scholar 

  • Wang R, Wang Y, Tang X (2012) Identification of the toxic compounds produced by Sargassum thunbergii to red tide microalgae. Chin J Oceanol Limnol 30(5):778–785

    Article  CAS  Google Scholar 

  • Wang HQ, Zhu HJ, Zhang LY, Xue WJ, Yuan B (2014) Identification of antialgal compounds from the aquatic plant Elodea nuttallii. Allelopath J 34(2):207–213

    Google Scholar 

  • Xiao X, Huang H, Ge Z, Rounge TB, Shi J, Xu X, Li R, Chen Y (2014) A pair of chiral flavonolignans as novel anti-cyanobacterial allelochemicals derived from barley straw (Hordeum vulgare): characterization and comparison of their anti-cyanobacterial activities. Environ Microbiol 16(5):1238–1251

    Article  CAS  Google Scholar 

  • Yu H, Hu HY, Xing X, Sakoda A, Sagehashi M, Li FM (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91(3):262–269

    Article  CAS  Google Scholar 

  • Yu X, Cai G, Wang H, Hu Z, Zheng W, Lei X, Zhu X, Chen Y, Chen Q, Din H (2017) Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls. J Hazard Mater 341:138

    Article  CAS  Google Scholar 

  • Zhang XF, Liu YJ (2007) Advances in the biological study of Dinoflagellate Prorocentrum donghaiense Lu. Ecol Environ 16(3):1053–1057

    Google Scholar 

  • Zhang X, Tang X, Wang M, Zhang W, Zhou B, Wang Y (2017) ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation. J Photochem Photobiol B Biol 173:360–367

    Article  CAS  Google Scholar 

  • Zhou M, Zhu M, Zhang J (2001) Status of harmful algal blooms and related research activities in China. Chin Bull Life Sci 13:54–59,53

    Google Scholar 

  • Zhou M, Yan T, Zhou J (2003) Preliminary analysis of the characteristics of red tide areas in Changjiang River estuary and its adjacent sea. Chin J Appl Ecol 14(7):1031–1038

    CAS  Google Scholar 

  • Zhou W, Yin K, Dedi Z (2006) Phytoplankton biomass and high frequency of Prorocentrum donghaiense harmful algal bloom in Zhoushan sea area in spring. Chin J Appl Ecol 17(5):887–893

    Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant Nos. 31500414 and 31200400), Natural Science Foundation of Shandong Province (Grant Nos. ZR2015CL015 and ZR2017MC037), Foundation for Outstanding Young Scientist in Shandong Province (Grant No. ZR2016CB27), and Project of Science and Technology in Qufu Normal University (Grant No. xkj201608).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renjun Wang or Peike Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Chen, J., Ding, N. et al. Antialgal effects of α-linolenic acid on harmful bloom-forming Prorocentrum donghaiense and the antialgal mechanisms. Environ Sci Pollut Res 25, 24798–24806 (2018). https://doi.org/10.1007/s11356-018-2536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2536-7

Keywords

Navigation