Skip to main content
Log in

Vertical shift in ciliate body-size spectrum and its environmental drivers in western Arctic pelagic ecosystems

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As an inherent functional trait, body-size spectrum is widely used as an informative indicator to summarize community structures in taxon-free space. The vertical shift in the body-size spectrum of pelagic ciliates and its environmental drivers were explored at eight depth layers from the water surface to a depth of 100 m in western Arctic pelagic ecosystems. A total of 85 samples were collected at 23 sampling stations during the summer sea-ice reduction period from August 5 to August 24, 2016. Based on equivalent spherical diameter (ESD), six body-size ranks were identified, of which ranks S2 (15–25 μm), S3 (26–38 μm), S4 (39–60 μm), and S6 (79–91 μm) were the top four levels in frequency of occurrence and ranks S2 and S3 were the dominant levels in abundance. The body-size spectrum of the ciliates showed a clear vertical shift, with a significant succession among the dominant body-size units from the water surface to deeper layers in the water column. Multivariate analysis demonstrated a significant vertical variation in the body-size spectrum of the ciliates among the eight depths, which was significantly correlated with nutrients (phosphate and nitrite + nitrate) and chlorophyll a (Chl a), alone or in combination with dissolved oxygen. Four body-size diversity/distinctness indices were significantly correlated with the levels of phosphate, nitrite + nitrate, ammonium, and Chl a. Our results demonstrated that the body-size spectrum of pelagic ciliates can be shifted by environmental drivers (mainly nutrients and Chl a); thus, we suggest that it may be used to indicate water quality status on a vertical scale in the water column in deep seas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akin S, Winemiller KO (2008) Body size and trophic position in a temperate estuarine food web. Acta Oecol 33:144–153

    Article  Google Scholar 

  • Andersen P (1988) The quantitative importance of the microbial loop in the marinepelagic: a case study from the North Bering/Chukchi seas. Arch Hydrobiol Beih 31:243–251

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER guide to software and statistical methods. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Basset A, Barbone E, Borja A, Brucet S, Pinna M, Quintana XD, Reizopoulou S, Rosati I, Simboura N (2012) A benthic macroinvertebrate size spectra index for implementing the Water Framework Directive in coastal lagoons in Mediterranean and Black Sea ecoregions. Ecol Indic 12:72–83

    Article  Google Scholar 

  • Beaver JR, Crisman TL (1982) The trophic response of ciliated protozoans in freshwater lakes. Limnol Oceanogr 27:246–253

    Article  Google Scholar 

  • Beaver JR, Crisman TL (1989) Analysis of the community structure of planktonic ciliated protozoa relative to trophic state in Florida lakes. Hydrobiologia 174:177–184

    Article  CAS  Google Scholar 

  • Budikova D (2009) Role of Arctic sea ice in global atmospheric circulation: a review. Glob Planet Chang 68:149–163

    Article  Google Scholar 

  • Cairns J Jr, Lanza GR, Parker BC (1972) Pollution related to structural and functional changes in aquatic communities with emphasis on freshwater algae and protozoa. Proc Acad Natl Sci PA 124:79–127

    Google Scholar 

  • Carmack E, Melling H (2011) Warmth from the deep. Nat Geosci 4:7–8

    Article  CAS  Google Scholar 

  • Carmack E, Barber D, Christensen J, Macdonald R, Rudels B, Sakshaug E (2006) Climate variability and physical forcing of the food webs and the carbon budgetonpanarctic shelves. Prog Oceanogr 71:145–181

    Article  Google Scholar 

  • Caron DA, Goldmann JC (1990) Protozoan nutrient regeneration. In: Capriulo GM Jr (ed) Ecology of Marine Protozoa. Oxford University Press, New York, pp 283–306

    Google Scholar 

  • Choi KH, Yang EJ, Kim D, Kang HK, Noh JH, Kim CH (2012) The influence of coastal waters in distribution of the heterotrophic protists in the northern East China Sea, and the impact of protist grazing on phytoplankton. J Plankton Res 34:886–904

    Article  CAS  Google Scholar 

  • Clarke KR, Warwick RM (1998) A taxonomic distinctness index and its statistical properties. J Appl Ecol 35:523–531

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2015) PRIMER 7User Manual/Turorial. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Coachman LK, Barnes CA (1961) The contribution of Bering Sea water to the Arctic Ocean. Arctic 14:147–161

    Article  Google Scholar 

  • Comeau AM, Li WKW, Tremblay JÉ, Carmack EC, Lovejoy C (2011) Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One 6:e27492. https://doi.org/10.1371/journal.pone.0027492

    Article  CAS  Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L011703

    Article  Google Scholar 

  • Corliss JO (2002) Biodiversity and biocomplexity of the protists and an overview of their significant roles in maintenance of our biosphere. Acta Protozool 41:199–219

    Google Scholar 

  • Dolan JR, Coats DW (1990) Seasonal abundances of planktonic ciliates and microflagellates in mesohaline Chesapeake Bay waters. Estuar Coast Shelf Sci 31:157–175

    Article  Google Scholar 

  • Dolan JR, Pierce RW, Yang EJ, Kim SY (2012) Southern Ocean biogeography of tintinnid ciliates of the marine plankton. J Eukaryot Microbiol 59:511–519

    Article  Google Scholar 

  • Dolan JR, Landry MR, Ritchie ME (2013) The species-rich assemblages of tintinnids (marine planktonic protists) are structured by mouth size. ISME J 7:1237–1243

    Article  Google Scholar 

  • Finlay BJ, Bannister P, Stewart J (1979) Temporal variation in benthic ciliates and the application of association analysis. Freshw Biol 9:45–53

    Article  Google Scholar 

  • Finlay BJ, Berninger UG, Clarke KJ, Cowling AJ, Hindle RM, Rogerson A (1988) On the abundance and distribution of protozoa and their food in a productive freshwater pond. Eur J Protistol 23:205–217

    Article  CAS  Google Scholar 

  • Gaedke U (1992) This size distribution of plankton biomass in a large lake and its seasonal variability. Limnol Oceanogr 37:1202–1220

    Article  Google Scholar 

  • Garrison DL, Buck K (1989) Protozooplankton in the Weddell Sea, Antarctica: abundance and distribution in the ice-edge zone. Polar Biol 9:341–351

    Article  Google Scholar 

  • George PBL, Lindo Z (2015) Application of body size spectra to nematode trait-index analyses. Soil Biol Biochem 84:15–20

    Article  CAS  Google Scholar 

  • Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101

    Article  Google Scholar 

  • Ismael AA, Dorgham MM (2003) Ecological indices as a tool for assessing pollution in El-Dekhaila Harbour (Alexandria, Egypt). Oceanologia 45:121–131

    Google Scholar 

  • Jiang Y, Xu H, Hu X, Zhu M, Al-Rasheid KAS, Warren A (2011) An approach to analyzing spatial pattern of planktonic ciliate communities for monitoring water quality in Jiaozhou Bay, northern China. Mar Pollut Bull 62:227–235

    Article  CAS  Google Scholar 

  • Jiang Y, Xu H, Zhang W, Zhu M, Al-Rasheid KAS (2012) Can body-size patterns of ciliated zooplankton be used for assessing marine water quality? A case study on bioassessment in Jiaozhou Bay, northern Yellow Sea. Environ Sci Pollut Res 19:1747–1754

    Article  Google Scholar 

  • Jiang Y, Yang EJ, Min JO, Kang SH, Lee SH (2013) Using pelagic ciliated microzooplankton communities as an indicator for monitoring environmental condition under impact of summer sea-ice reduction in western Arctic Ocean. Ecol Indic 34:380–390

    Article  CAS  Google Scholar 

  • Jiang Y, Yang EJ, Kim SY, Kim YN, Lee SH (2014) Spatial patterns in pelagic ciliate community responses to various habitats in the Amundsen Sea (Antarctica). Prog Oceanogr 128:49–59

    Article  Google Scholar 

  • Jiang Y, Yang EJ, Min JO, Kim TW, Kang SH (2015) Vertical variation of pelagic ciliate communities in the western Arctic Ocean. Deep Sea Res II 120:103–113

    Article  Google Scholar 

  • Jiang Y, Liu Q, Yang EJ, Wang M, Kim TW, Cho KH, Lee SH (2016) Pelagic ciliate communities within the Amundsen Sea polynya and adjacent sea ice zone, Antarctica. Deep Sea Res II 123:69–77

    Article  Google Scholar 

  • Kamenir Y, Dubinsky Z, Harris R (2010) Taxonomic size structure consistency of English Channel phytoplankton. J Exper Mar Biol Ecol 383:105–110

    Article  Google Scholar 

  • Kchaou N, Elloumi J, Drira Z, Hamza A, Ayadi H, Bouain A, Aleya L (2009) Distribution of ciliates in relation to environmental factors along the coastlineof the Gulf of Gabes, Tunisia. Estuar Coast Shelf Sci 83:414–424

    Article  CAS  Google Scholar 

  • Kofoid CA, Campbell AS (1929) A conspectus of the marine and freshwa-ter Ciliata belonging to the suborder Tintinnoinea with descriptions of newspecies principally from the Agassiz expedition to the eastern tropical Pacific1904–1905. Univ Calif Publs Zool 34:1–403

    Google Scholar 

  • Kofoid CA, Campbell AS (1939) The Tintinnoinea of the eastern tropical Pacific. Bull Mus Comp Zool Harv 84:1–473

    Google Scholar 

  • López E, Anadón R (2008) Copepod communities along an Atlantic Meridional Transect: Abundance, size structure, and grazing rates. Deep-Sea Res I 55:1375–1391

    Article  CAS  Google Scholar 

  • Lynn DH (2008) The ciliated protozoa. In: Characterization, Classification and Guideto the Literature, 3rd edn. Springer, London

  • Montagnes DJS, Lynn DH (1991) Taxonomy of choreotrichs, the major marineplanktonic ciliates, with emphasis on the aloricate forms. Mar Microb Food Webs 5:59–74

    Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A Manual of Chemical and Biological Meth-ods for Seawater Analysis. Pergamon Press, Oxford

    Google Scholar 

  • Peters RH (1983) The ecological implication of body size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pitta P, Giannakourou A, Christaki U (2001) Planktonic ciliates in the oligotrophicMediterranean Sea: longitudinal trends of standing stocks distributions andanalysis of food vacuole contents. Aquat Microb Ecol 24:297–311

    Article  Google Scholar 

  • Ruhl HA (2007) Abundance and size distribution dynamics of abyssal epibenthic megafauna in the northeast Pacific. Ecology 88:1250–1262

    Article  Google Scholar 

  • San Martin E, Harris RP, Irigoien X (2006) Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep-Sea Res II 53:1560–1572

    Article  Google Scholar 

  • Sheldon RW, Prakash A, Sutcliffe WH (1972) The size distribution of particles in the ocean. Limnol Oceanogr 17:327–340

    Article  Google Scholar 

  • Sherr EB, Sher BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711

    Article  Google Scholar 

  • Sime-Ngando T, Gosselin M, Roy S, Chanut JP (1995) Significance of planktonicciliated protozoa in the lower St. Lawrence estuary: comparison with bacterialphytoplankton, and particulate organic carbon. Aquat Microb Ecol 9:243–258

    Article  Google Scholar 

  • Song W, Zhao Y, Xu K, Hu X, Gong J (2003) Pathogenic Protozoa in Mariculture. Science Press, Beijing

    Google Scholar 

  • Stoecker DK, McDowell-Cappuzzo J (1990) Predation on protozoa: its importanceto zooplankton. J Plankton Res 12:891–908

    Article  Google Scholar 

  • Vadrucci MR, Stanca E, Mazziotti C, Umani SF, Georgia A, Moncheva S, Romano A, Bucci R, Ungaro N, Basset A (2013) Ability of phytoplankton trait sensitivity to highlight anthropogenic pressures in Mediterranean lagoons: A size spectra sensitivity index (ISS-phyto). Ecol Indic 34:113–125

    Article  CAS  Google Scholar 

  • Wang Z, Xu G, Yang Z, Xu H (2016) An approach to determining homogeneity of body-size spectrum of biofilm-dwelling ciliates for colonization surveys. Ecol Indic 61:865–870

    Article  Google Scholar 

  • Wang Z, Xu G, Zhao L, Gao Y, Abdullah AM, Xu H (2017) A new method for evaluating defense of microalgae against protozoan grazing. Ecol Indic 77:161–266

    Google Scholar 

  • Winberg GG (1971) Methods for the Estimation of Production of Aquatic Animals. Academic Press, New York

    Google Scholar 

  • Xu G, Xu H (2016) Use of body-size distinctness of biofilm-dwelling protozoa for marine bioassessment. Ecol Indic 64:152–157

    Article  Google Scholar 

  • Xu G, Xu H (2017) Approach to analysis of functional redundancy in protozoan communities for bioassessment in marine ecosystems. Ecol Indic 77:41–47

    Article  Google Scholar 

  • Xu H, Warren A, AL-Rasheid KAS, Zhu M, Song W (2010) Planktonic protist communities in semi-enclosed mariculture waters: temporal dynamics of functional groups and their responses to environmental conditions. Acta Oceanol Sin 29:106–115

    Article  CAS  Google Scholar 

  • Xu H, Jiang Y, Al-Rasheid KAS, Al-Farraj SA, Song W (2011) Application of an indicator based on taxonomic relatedness of ciliated protozoan assemblages for marine environmental assessment. Environ Sci Pollut Res 18:1213–1221

    Article  CAS  Google Scholar 

  • Xu H, Jiang Y, Zhang W, Zhu M, Al-Rasheid KAS, Warren A (2013) Annual variations in body-size spectra of planktonic ciliate communities and their relationships to environmental conditions: a case study in Jiaozhou Bay, northern China. J Mar Biol Assoc UK 93:47–55

    Article  Google Scholar 

  • Xu H, Zhang W, Jiang Y, Yang EJ (2014) Use of biofilm-dwelling ciliate communities to determine environmental quality status of coastal water. Sci Total Environ 470–471:511–518

    Article  CAS  Google Scholar 

  • Xu G, Zhang W, Xu H (2015) Can dispersions be used for discriminating water quality status in coastal ecosystems? A case study based on biofilm-dwelling microbial eukaryotes. Ecol Indic 57:208–214

    Article  CAS  Google Scholar 

  • Xu G, Xu Y, Xu H (2016) Insights into discriminating water quality status using new biodiversity measures based on a trait hierarchy of body-size units. Ecol Indic 60:980–986

    Article  Google Scholar 

  • Xu G, Yang EJ, Xu H (2017) Environmental drivers of heterogeneity in the trophic-functional structure of protozoan communities during an annual cycle in a coastal ecosystem. Mar Pollut Bull 121:400–403

    Article  CAS  Google Scholar 

  • Yang EJ, Choi JK, Hyun JH (2004) Distribtuion and structure of heterotrophic protist communities in teh northeast equatrorial Pacific Ocean. Mar Biol 146:1–15

    Article  Google Scholar 

  • Yang EJ, Kang HK, Yoo S, Hyun JH (2009) Conribution of auto- and heterotrophic protozoa to the diet of copepods in the Ulleung Basin, East Sea/Japan Sea. J Plankton Res 31:647–659

    Article  Google Scholar 

  • Yang EJ, Ju SJ, Chio JK (2010) Feeding activity of the coepod Acartia hongi on phytoplankton and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuar Coast Shelf Sci 88:292–301

    Article  Google Scholar 

  • Yang EJ, Hyun JH, Kim D, Par J, Kang SH, Shin HC, Lee SH (2012) Mesoscale distribution of protozooplankton communities and theri herbivory in the western Scotia Sea of the Southern Ocean during the austral spring. J Exp Mar Biol Ecol 428:5–15

    Article  Google Scholar 

  • Yang Z, Xu Y, Xu G, Xu H (2016) Carbon flux of trophic-functional groups within the colonization process of biofilm-dwelling ciliates in marine ecosystems. J Mar Biol Assoc UK 96:1313–1318

    Article  CAS  Google Scholar 

  • Zhang W, Xu H, Jiang Y, Zhu M, Al-Reshaid KAS (2012) Colonization dynamics in trophic-functional structure of periphytic protist communities in coastal waters. Mar Biol 159:735–748

    Article  Google Scholar 

  • Zhang W, Liu Y, Warren A, Xu H (2014) Insights into assessing water quality using taxonomic distinctness based on a small species pool of biofilm-dwelling ciliate fauna in coastal waters of the Yellow Sea, northern China. Mar Pollut Bull 89:121–127

    Article  CAS  Google Scholar 

  • Zhao L, Xu G, Wang Z, Xu H (2016) Body-size spectra of biofilm-dwelling protozoa and their seasonal shift in coastal ecosystems. Eur J Protistol 56:32–40

    Article  Google Scholar 

  • Zhong X, Xu G, Wang Y, Xu H (2014) An approach to determination of functional species pool for community research. Ecol Indic 46:78–83

    Article  Google Scholar 

  • Zhong X, Xu G, Xu H (2017a) Use of multiple functional traits of protozoa for bioassessment of marine pollution. Mar Pollut Bull 119:33–38

    Article  CAS  Google Scholar 

  • Zhong X, Xu G, Xu H (2017b) An approach to analysis of colonization dynamics in community functioning of protozoa for bioassessment of marine pollution. Ecol Indic 78:526–530

    Article  Google Scholar 

  • Zhu M, Jiang Y, Zhang W, Al-Rasheid KAS, Xu H (2012) Can non-loricate ciliateassemblages be a surrogate to analyze taxonomic relatedness pattern of ciliatedprotozoan communities for marine bioassessment? A case study in JiaozhouBay, northern China. Water Environ Res 84:2045–2053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the K-AOOS Program (KOPRI; grant number PM17040) funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EunJin Yang.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Yang, E., Lee, Y. et al. Vertical shift in ciliate body-size spectrum and its environmental drivers in western Arctic pelagic ecosystems. Environ Sci Pollut Res 25, 19082–19091 (2018). https://doi.org/10.1007/s11356-018-2094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2094-z

Keywords

Navigation