Skip to main content
Log in

Mutagenic assessment of Lithobates catesbeianus tadpoles exposed to the 2,4-D herbicide in a simulated realistic scenario

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of the current study is to assess possible erythrocyte mutagenic effects on Lithobates catesbeianus tadpoles exposed to water contaminated with 2,4-D. In order to do so, tadpoles were exposed to a predictive and environmentally relevant herbicide concentration (1.97 mg/L), which is likely to be found in lentic environments formed by superficial water runoffs in pasture areas where the herbicide was applied. The micronucleus test, as well as tests for other nuclear abnormalities, was conducted after 3, 5, and 9 days of exposure (d.e.). Changes in the biomass and mouth-cloaca length or interference in the larval development of the animals (in the three evaluated times) were not recorded. However, tadpoles exposed to 2,4-D showed the highest total number of nuclear abnormalities, as well as the highest frequency of binucleated erythrocytes and kidney-shaped nuclei (shortly after 3 d.e.). The micronucleus frequency was also higher in animals exposed to 2,4-D (in the 3rd, 5th, and 9th d.e.), as well as the frequency of binucleated cells (3rd, 5th, and 9th d.e.) presenting notched (9th d.e.) and blebbled (9th d.e.) nuclei in comparison to those of the control, after 5 and 9 days of exposure. Therefore, the current study is a pioneer in showing that 2,4-D has a mutagenic effect on L. catesbeianus tadpoles, even at low concentrations (environmentally relevant) and for a short period of time, a fact that may lead to direct losses in anuran populations living in areas adjacent to those subjected to 2,4-D herbicide application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander HC, Gersich FM, Mayes MA (1985) Acute toxicity of four phenoxy herbicides to aquatic organisms. Bull Environ Contam Toxicol 35(3):314–321

    Article  CAS  Google Scholar 

  • Arcaute CR, Solenesk S, Larramendy ML (2016) Toxic and genotoxic effects of the 2,4-dichlorophenoxyacetic acid (2,4-D)-based herbicide on the neotropical fish Cnesterodon decemmaculatus. Ecotoxicol Environ Saf 128:222–229

    Article  CAS  Google Scholar 

  • Armas ED, Monteiro RTR, Antunes PM, Santos MADF, Camargo PB (2007) Diagnóstico espaço-temporal da ocorrência de herbicidas nas águas superficiais e sedimento do Rio Corumbataí e principais afluentes. Quim Nova 1119–1127. https://doi.org/10.1590/S0100-40422007000500013

  • Aronzon CM, Sandoval MT, Herkovits J, Pérez-Coll CS (2011) Stage-dependent toxicity of 2,4-dichlorophenoxyacetic on the embryonic development of a South American toad, Rhinella arenarum. Environ Toxicol Environ Toxicol 26(4):373–381

    Article  CAS  Google Scholar 

  • Ateeq B, Farah MA, Ahmad W (2006) Evidence of apoptotic effects of 2,4-D and butachlor on walking catfish, Clarias batrachus, by transmission electron microscopy and DNA degradation studies. Life Sci 78:977–986

    Article  CAS  Google Scholar 

  • Bazrafshan E, Kord Mostafapour F, Faridi H, Farzadkia M, Sargazi S, Sohrabi A (2013) Removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous environments using single-walled carbon nanotubes. Health Scope 2(1):39–46. https://doi.org/10.17795/jhealthscope-7710

    Article  Google Scholar 

  • Bécaert V, Samson R, Deschênes L (2006) Effect of 2,4-D contamination on soil functional stability evaluated using the relative soil stability index (RSSI). Chemosphere 64:1713–1721

    Article  CAS  Google Scholar 

  • Benli AÇK, Sarakaya R, Sepici-Dincel A, Selvi M, Sahin D, Erkoç F (2007) Investigation of acute toxicity of (2,4-dichlorophenoxy) acetic acid (2,4-D) herbicide on crayfish (Astacus leptodactylus Esch. 1823). Pestic Biochem Physiol 88:296–299

    Article  CAS  Google Scholar 

  • Bukowska B (2006) Toxicity of 2,4-dichlorophenoxyacetic acid—molecular mechanisms. Pol J Environ Stud 15(3):365–374

    CAS  Google Scholar 

  • Carpenter S, Caraco NF, Correl DL, Howarth RW, Sharpley NA, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Issues Ecol (3):1–14

  • Cavas T, Garanko NN, Arkhipchuk VV (2005) Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate. Food Chem Toxicol 43:569e574

    Article  CAS  Google Scholar 

  • Coady K, Marino T, Thomas J, Sosinski L, Neal B, Hammond (2013) An evaluation of 2,4-dichlorophenoxyacetic acid in amphibian metamorphosis assay and the fish short-term reproduction assay. Ecotoxicol Environ Saf 90:143–150

    Article  CAS  Google Scholar 

  • Correia FV, Moreira JC (2010) Effects of glyphosate and 2, 4-D on earthworms (Eisenia fetida) in laboratory tests. Bull Environ Contam Toxicol 85:264–268

    Article  CAS  Google Scholar 

  • Crain DA, Spiteri ID, Guillette LJ Jr (1999) The functional and structural observations of the neonatal reproductive system of alligators exposed in ovo to atrazine, 2,4-D, or estradiol. Toxicol Ind Health 15(1–2):180–185

    Article  CAS  Google Scholar 

  • Crist E, Mora C, Engelman R (2017) The interaction of human population, food production, and biodiversity protection. Science 356(6335):260–264

    Article  CAS  Google Scholar 

  • DeQuattro ZA, Karasov WH (2016) Impacts of 2,4-dichlorophenoxyacetic acid aquatic herbicide formulations on reproduction and development of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 35(6):1478–1488

    Article  CAS  Google Scholar 

  • Dijkman TJ, Birkved M, Saxe H, Wenzel H, Hauschild MZ (2017) Environmental impacts of barley cultivation under current and future climatic conditions. J Clean Prod 140:644–653

    Article  Google Scholar 

  • Festing S, Wilkinson R (2007 Jun) The ethics of animal research. Talking point on the use of animals in scientific research. EMBO Rep 8(6):526–530

    Article  CAS  Google Scholar 

  • Figueiredo J, Rodrigues DJ (2014) Effects of four types of pesticides on survival, time and size to metamorphosis of two species of tadpoles (Rhinella marina and Physalaemus centralis) from the southern Amazon, Brazil. Herpetol J 24:7–15

    Google Scholar 

  • Gómez-Meda BC, Zúñiga-González GM, Zamora-Perez A, Luisa Ramos-Ibarra M, Batista-González CM, Torres-Mendoza BM (2004) Folate supplementation of cyclophosphamide-treated mothers diminishes micronucleated erythrocytes in peripheral blood of newborn rats. Environ Mol Mutagen 44:174–178

    Article  CAS  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Hansen B, Kristensen ES, Grant R, Hogh-Jensen H, Simmelsgaard SF, Olesen JR (2000) Nitrogen leaching from conventional versus organic farming systems—a systems modeling approach. Eur J Agron 13(1):65–82

    Article  CAS  Google Scholar 

  • Harada Y, Tanaka N, Ichikawa M, Kamijo Y, Sugiyama E, Gonzales FJ, Aoyama T (2016) PPARα-dependent cholesterol/testosterone disruption in Leydig cells mediates 2,4-dichlorophenoxyacetic acid-induced testicular toxicity in mice. Arch Toxicol 90(12):3061–3071

    Article  CAS  Google Scholar 

  • Hattab S, Boughattas I, Boussetta H, Viarengo A, Banni M, Sforzini S (2015) Transcriptional expression levels and biochemical markers of oxidative stress in the earthworm Eisenia andrei after exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). Ecotoxicol Environ Saf 122:76–82. https://doi.org/10.1016/j.ecoenv.2015.07.014

    Article  CAS  Google Scholar 

  • Holcombe GW, Benoit DA, Hammermeister DE, Leonard EN, Johnson RD (1995 Apr) Acute and long-term effects of nine chemicals on the Japanese medaka (Oryzias latipes). Arch Environ Contam Toxicol 28(3):287–297

    Article  CAS  Google Scholar 

  • Hoy JB (1985) Toxicity of 2,4-D to millipedes (Polydesmidae: Diplopoda): food contamination and residue distribution as factors. J Econ Entomol 78:302–304

    Article  CAS  Google Scholar 

  • Itoh K, Kinoshita M, Morishita S, Chida M, Suyama K (2013) Characterization of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid-degrading fungi in Vietnamese soils. FEMS Microbiol Ecol 84:124–132

    Article  CAS  Google Scholar 

  • Jabran Zahid JH, Robinson E, Kelly RL (2016) Agriculture, population growth, and statistical analysis of the radiocarbon record. Proc Natl Acad Sc 113(4):931–935

    Article  CAS  Google Scholar 

  • Lajmanovich RC, Junges CM, Attademo AM, Peltzer PM, Cabagna-Zenklusen MC, Basso A (2013) Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella renarum tadpoles. Water Air Soil Pollut 224:1404

    Article  CAS  Google Scholar 

  • Lajmanovich RC, Cabagna-Zenklusen MC, Attademo AM, Junges CM, Peltzer PM, Bassó A, Lorenzatti E (2014) Induction of micronuclei and nuclear abnormalities in tadpoles of the common toad (Rhinella arenarum) treated with the herbicides Liberty® and glufosinate-ammonium. Mutat Res Genet Toxicol Environ Mutagen 769:7–12. https://doi.org/10.1016/j.mrgentox.2014.04.009

  • Lazurick C, Lidzbarski N, Owings R, Brotherton J, Steele E (2017) Investigating the toxicity and accumulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate in Eisenia fetida. J S C Acad Sci 15(2):6

    Google Scholar 

  • Lenkowski JR, Sanchez-Bravo G, McLaughlin KA (2010) Low concentrations of atrazine, glyphosate, 2,4-dichlorophenoxyacetic acid, and triadimefon exposures have diverse effects on Xenopus laevis organ morphogenesis. J Environ Sci 22:1305–1308

    Article  CAS  Google Scholar 

  • Li K, Wu JQ, Jiang LL, Shen LZ, Li JY, He ZH, Wei P, Lv Z, He MF (2017) Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos. Chemosphere 171:40–48

    Article  CAS  Google Scholar 

  • Lovel DP (2013) Draft report on statistical issues related to OECD in vitro genotoxicity test guidelines. Available in: https://www.oecd.org/env/ehs/testing/Stat%20report%20TG%20473_487.pdf. Accessed 15 Nov 2016

  • Marcato ACC, Souza CP, Fontanetti CS (2017) Herbicide 2,4-D: a review of toxicity on non-target organisms. Water Air Soil Pollut 228(120)

  • Marouani N, Tebourbi O, Cherif D, Hallegue D, Yacoubi MT, Sakly M, Benkhalifa M, Rhouma KB (2017) Effects of oral administration of 2,4-dichlorophenoxyacetic acid (2,4-D) on reproductive parameters in male Wistar rats. Environ Sci Pollut Res 24(1):519–526

    Article  CAS  Google Scholar 

  • Montalvão MF, Malafaia G (2017) Effects of abamectin on bullfrog tadpoles: insights on cytotoxicity. Environ Sci Pollut Res Int 24(29):23411–23416. https://doi.org/10.1007/s11356-017-0124-x

    Article  CAS  Google Scholar 

  • Montalvão MF, de Souza JM, Guimarães ATB, de Menezes IPP, Castro ALDS, Rodrigues ASL, Malafaia G (2017 Sep) The genotoxicity and cytotoxicity of tannery effluent in bullfrog (Lithobates catesbeianus). Chemosphere 183:491–502. https://doi.org/10.1016/j.chemosphere.2017.05.080

    Article  CAS  Google Scholar 

  • Montalvão MF, da Silva Castro AL, de Lima Rodrigues AS, de Oliveira Mendes B, Malafaia G (2018) Impacts of tannery effluent on development and morphological characters in a neotropical tadpole. Sci Total Environ 610–611:1595–1606. https://doi.org/10.1016/j.scitotenv.2017.06.134

    Article  CAS  Google Scholar 

  • Morgan MK, Scheuerman PR, Bishop CS, Pyles RA (1996) Teratogenic potential of atrazine and 2,4-D using FETAX. J Toxicol Environ Health 48(2):151–168

    Article  CAS  Google Scholar 

  • Neto DM, Froehner S, Machado KS (2012) Avaliação do transporte do ácido 2,4-diclofenoxiacético através de um lisímetro. Química Nova 35:1809–1813

    Article  Google Scholar 

  • Oga S, Camargo MMA, Batistuzzo JAO (2014) Fundamentos de Toxicologia. 4. ed. São Paulo, Atheneu

    Google Scholar 

  • Oruç EO, Sevgiler Y, Uner N (2004) Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comp Biochem Physiol C 137:43–51

    Article  CAS  Google Scholar 

  • Papaefthimiou C, Pavlidou V, Gregorc A, Theophilidis G (2002) The action of 2,4-dichlorophenoxyacetic acid on the isolated heart of insect and amphibia. Environ Toxicol Pharmacol 11(2):127–140

    Article  CAS  Google Scholar 

  • Perez-Coll CS, Herkovits J (2006) Synergistic effects of copper and butylic ester of 2,4-dichlorophenoxyacetic acid (Esternon Ultra) on amphibian embryos. Int J Environ Res Public Health 3(4):343–347

    Article  CAS  Google Scholar 

  • Relyea RA (2005) The lethal impacts of roundup and predatory stress on six species of North American tadpoles. Arch Environ Contam Toxicol 48:351–357

    Article  CAS  Google Scholar 

  • Sanchez-Galan S, Linde AR, Ayllon F, Garcia-Vazquez E (2001) Induction of micronuclei in eel (Anguilla anguilla L.) by heavy metals. Ecotoxicol Environ Saf 49:139e143

    Article  CAS  Google Scholar 

  • Sanders HO (1970) Pesticide toxicities to tadpoles of the Western chorus frog Pseudacris triseriata and Fowler’s toad Bufo woodhouseifowleri. Copeia 1970:246–251

    Article  Google Scholar 

  • Schulz M, Matthies M (2007) Runoff of pesticides: achievements and limitations of modelling agrochemical dislocation from non-point sources at various landscape related scales. Living Rev Landscape 1:1–28

    Google Scholar 

  • Sinton GL, Fan LT, Erickson LE, Lee SM (1986) Biodegradation of 2,4-D and related xenobiotic compounds. Enzym Microb Technol 8(7):395–403

    Article  CAS  Google Scholar 

  • Suwalsky M, Quevedo L, Norris B, Benites M (1999 May) Toxic action of the herbicide 2,4-D on the neuroepithelial synapse and on the nonstimulated skin of the frog Caudiverbera caudiverbera. Bull Environ Contam Toxicol 62(5):570–577

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2004) Environmental Date and Effects Division’s risk assessment for the reregistration eligibility

  • USEPA—United States Environmental Protection Agency (2005) Reregistration eligibility decision for 2,4-D. United States Environmental Protections Agency, Washington, DC

    Google Scholar 

  • Veronez AC, Salla RV, Baroni VD, Barcarolli IF, Bianchini A, Dos Reis Martinez CB, Chippari-Gomes AR (2016) Genetic and biochemical effects induced by iron ore, Fe and Mn exposure in tadpoles of the bullfrog Lithobates catesbeianus. Aquat Toxicol 174:101–8. https://doi.org/10.1016/j.aquatox.2016.02.011

  • Waite DT, Cessna AJ, Grover R, Kerr LA, Snihura AD (2002) Environmental concentrations of agricultural herbicides: 2,4-d and triallate. J Environ Qual 31(1):129–144

    Article  CAS  Google Scholar 

  • Whitehead CC, Pettigrew RJ (1972) The subacute toxicity of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid to chicks. Toxicol Appl Pharmacol 21:348–354

    Article  CAS  Google Scholar 

  • Willemsen RE, Hailey A (2001) Effects of spraying the herbicides 2,4-D and 2,4,5-T on a population of the tortoise Testudo hermanni in southern Greece. Environ Pollut 113(1):71–78

    Article  CAS  Google Scholar 

  • Zhang D, Wu Y, Yuan Y, Liu W, Kuang H, Yang J, Yang B, Wu L, Zou W, Xu C (2017) Exposure to 2,4-dichlorophenoxyacetic acid induces oxidative stress and apoptosis in mouse testis. Pestic Biochem Physiol 141:18–22. https://doi.org/10.1016/j.pestbp.2016.10.006

    Article  CAS  Google Scholar 

  • Zhao Y, Newman MC (2004) Shortcomings of the laboratory-derived median lethal concentration for predicting mortality in field populations: exposure duration and latent mortality. Environ Toxicol Chem 23:2147–2153

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Brazilian National Council for Research (CNPq) (Brazilian research agency) (Proc. No 467801/2014-2) and Instituto Federal Goiano–Campus Urutaí (Goiás, Brazil) (Proc. No 23219.000094/2018-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Malafaia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All the procedures were approved by The Ethics Committee on Animal Use of Goiano Federal Institute (Comissão de Ética no Uso de Animais do Instituto Federal Goiano), Goiás, Brazil (protocol No. 2616170516). Meticulous efforts were made to assure that the animals suffered the least possible and to reduce external sources of stress, pain, and discomfort. The current study did not exceed the number of animals necessary to produce trustworthy scientific data. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesak, C., de Oliveira Mendes, B., de Oliveira Ferreira, R. et al. Mutagenic assessment of Lithobates catesbeianus tadpoles exposed to the 2,4-D herbicide in a simulated realistic scenario. Environ Sci Pollut Res 25, 15235–15244 (2018). https://doi.org/10.1007/s11356-018-1979-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1979-1

Keywords

Navigation