Skip to main content

Advertisement

Log in

Seasonal drought effects on the water quality of the Biobío River, Central Chile

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Quantifying the effect of droughts on ecosystem functions is essential to the development of coastal zone and river management under a changing climate. It is widely acknowledged that climate change is increasing the frequency and intensity of droughts, which can affect important ecosystem services, such as the regional supply of clean water. Very little is understood about how droughts affect the water quality of Chilean high flow rivers. This paper intends to investigate the effect of an, recently identified, unprecedented drought in Chile (2010–2015), on the Biobío River water quality, (36°45′–38°49′ S and 71°00′–73°20′ W), Central Chile. This river is one of the largest Chilean rivers and it provides abundant freshwater. Water quality (water temperature, pH, dissolved oxygen, electrical conductivity, biological oxygen demand, total suspended solids, chloride, sodium, nutrients, and trace metals), during the drought (2010–2015), was compared with a pre-drought period (2000–2009) over two reaches (upstream and downstream) of the river. Multivariate analysis and seasonal Mann-Kendall trend analyses and a Theil-Sen estimator were employed to analyze trends and slopes of the reaches. Results indicated a significant decreased trend in total suspended solids and a slightly increasing trend in water temperature and EC, major ions, and trace metals (chrome, lead, iron, and cobalt), mainly in summer and autumn during the drought. The reduced variability upstream suggested that nutrient and metal concentrations were more constant than downstream. The results evidenced, due to the close relationship between river discharge and water quality, a slightly decline of the water quality downstream of the Biobío River during drought period, which could be attenuated in a post-drought period. These results displayed that water quality is vulnerable to reductions in flow, through historical and emerging solutes/contaminants and induced pH mobilization. Consequently, seasonal changes and a progressive reduction of river flow affect the ecosystem functionality in this key Chilean river. The outcomes from this research can be used to improve how low flow conditions and the effects of a reduction in the river volume and discharge are assessed, which is the case under the scenario of more frequent drought periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguayo M, Pauchard A, Azócar G, Parra O (2009) Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX. Entendiendo la dinámica espacial y temporal del paisaje. Rev Chil Hist Nat 82:361–374

    Article  Google Scholar 

  • Andreoli A, Mao L, Iroumé A, Arumí JL, Nardini A, Pizarro R, Caamaño D, Meier C, Link O (2012) The need of a hydromorphological approach for Chilean river management. Rev Chil Hist Nat 85(3):339–343. https://doi.org/10.4067/S0716-078X2012000300008

    Article  Google Scholar 

  • Arumí JL, Rivera D, Muñoz E, Billib M (2012) Interacciones entre el agua superficial y subterránea en la región del Bío Bío de Chile. Obras y Proyectos (12):4–13. https://doi.org/10.4067/S0718-28132012000200001

  • Blöschl G, Sivapalan M, Wagener T, Viglione A, Savenije H (2013) Runoff prediction in ungauged basins, synthesis across processes, places and scales. Cambridge University press, 490 pp, DOI: https://doi.org/10.1017/CBO9781139235761.

  • Boisier JP, Rondanelli R, Garreaud RD, Muñoz F (2016) Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys Res Lett 43(1):413–421. https://doi.org/10.1002/2015GL067265

    Article  Google Scholar 

  • Boskurt D, Rojas M, Boisier JP, Valdivieso J (2017) Climate change impacts on hydroclimatic regimes and extremes over Andean basins in central Chile. Hydrol Earth Syst Sci Discuss:1–29. https://doi.org/10.5194/hess-2016-690

  • Burt TP, Howden NJK, Worrall F (2014) On the importance of very long-term water quality records. Wiley Interdiscip Rev Water 1(1):41–48. https://doi.org/10.1002/wat2.1001

    Article  Google Scholar 

  • Caamaño C, Behrens E, Martinez-Ruiz A, Alcayaga H (2015) Suspended sediment transport characterization along the biobio river, chile. E-proceedings of the 36th IAHR World Congress. 28 June – 3 July The Hague, the Netherlands

  • Carusso BS (2002) Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand. J Hydrol 257(1-4):115–133. https://doi.org/10.1016/S0022-1694(01)00546-7

    Article  Google Scholar 

  • Chiang G, Munkittrick K, Mcmaster Mark E, Barra R, Servos M (2014) Regional cumulative effects monitoring framework: gaps and challenges for the Biobío River basin in south central Chile. Gayana 78(2):109–119

    Google Scholar 

  • CR2. Center for Climate and Resilience Research (2015) Mega-drought (2010–2015) A lesson to the future, report for policymakers (in Spanish) prepared by the Center for Climate and Resilience Research (CR)2, Chile, available online at www.cr2.cl/megasequia.

  • Daniel I, DeGrandpre M, Farías L (2013) Greenhouse gas emissions from the Tubul-Raqui estuary (central Chile 36° S). Estuar Coast Shelf S 134:31–44. https://doi.org/10.1016/j.ecss.2013.09.019

    Article  CAS  Google Scholar 

  • Delpla I, Jung AV, Baures E, Clement M, Thomas O (2009) Impacts of climate change on surface water quality in relation to drinking water production. Environ Int 35(8):1225–1233. https://doi.org/10.1016/j.envint.2009.07.001

    Article  CAS  Google Scholar 

  • Elsdon TS, De Bruin MB, Diepen NJ, Gillanders BM (2009) Extensive drought negates human influence on nutrients and water quality in estuaries. Sci Total Environ 407(8):3033–3043. https://doi.org/10.1016/j.scitotenv.2009.01.012

    Article  CAS  Google Scholar 

  • García A, Jorde K, Habit E, Caamaño D, Parra O (2011) Downstream environmental effects of Ralco and Pangue dam operations: changes in habitat quality for native fish species, Biobío River, Chile. River Res Appl 27(3):312–327. https://doi.org/10.1002/rra.1358

    Article  Google Scholar 

  • Garreaud R, Alvarez-Garreton C, Barichivich J, Boisier JP, Christie D, Galleguillos M, Zambrano-Bigiarini M (2017) The 2010–2015 mega drought in Central Chile: impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci Discuss 2017:1–37

    Article  Google Scholar 

  • González LN, González A, Tume P, Silva A (2001) Hydrogeochemistry and behaviour of groundwater in the río Laja basin, Bío-Bío Región, Chile. In International Conference on Environmental Science and Technology, No. 7, Vol. A, p. 268–274. Ermoupolis, Syros, Greece

  • Grantham TE, Figueroa R, Prat N (2013) Water management in mediterranean river basins: a comparison of management frameworks, physical impacts, and ecological responses. Hydrobiologia 719(1):451–482. https://doi.org/10.1007/s10750-012-1289-4

    Article  Google Scholar 

  • Hillbricht-Ilkowska A, Rybak J, Rzepecki M (2000) Ecohydrological research of lake-watershed relations in diversified landscape (Masurian Lakeland, Poland). Ecol Eng 16(1):91–98. https://doi.org/10.1016/S0925-8574(00)00093-8

    Article  Google Scholar 

  • Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality analysis. Water Resour Res 18(1):107–121. https://doi.org/10.1029/WR018i001p00107

    Article  Google Scholar 

  • IPCC. Climate Change Impacts, Adaptation & Vulnerability (2001) Contribution of working group II to the third assessment report of the IPCC. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) . Cambridge University Press, Cambridge, 1000 pp

    Google Scholar 

  • IPCC. Climate Change The Physical Science Basis (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Karrasch B, Parra O, Cid H, Mehrens M, Pacheco P, Urrutia R, Valdovinos C, Zaror C (2006) Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Biobio River, Chile. Sci Total Environ 359(1-3):194–208. https://doi.org/10.1016/j.scitotenv.2005.03.029

    Article  CAS  Google Scholar 

  • Keeler BL, Polasky S, Brauman KA, Johnson KA, Finlay JC, O’Neill A, Kovacs K, Dalzell B (2012) Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc Natl Acad Sci 109(45):18619–18624. https://doi.org/10.1073/pnas.1215991109

    Article  Google Scholar 

  • Leniz B, Vargas C, Ahumada R (2012) Characterization and comparison of microphytoplankton biomass in the lower reaches of the Biobío River and the adjacent coastal area off Central Chile during autumn-winter conditions. Lat Am J Aquat Res 40(4):847–857. https://doi.org/10.3856/vol40-issue4-fulltext-3

    Article  Google Scholar 

  • Lutz SR, Mallucci S, Diamantini E, Majone B, Bellin A, Merz R (2016) Hydroclimatic and water quality trends across three Mediterranean river basins. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.07.102

  • Masotti I, Aparicio-Rizzo P, Yevenes MA, Garreaud R, Farías L (in revision) River discharges and their influence on phytoplankton biomass in coastal areas off central Chile (32°-37°S) during a drought period (2010-2014). Estuar Coasts

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration of time scales. Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim CA, pp.179-186

  • Meyer JL, Sale MJ, Mulholland PJ, LeRoyPoff N (1999) Impacts of climate change on aquatic ecosystem functioning and health. J Am Water Resour Assoc 35(6):1373–1386. https://doi.org/10.1111/j.1752-1688.1999.tb04222.x

    Article  Google Scholar 

  • Meza F, Wilks D, Gurovich L, Bambach N (2012) Impacts of climate change on irrigated agriculture in the Maipo Basin, Chile: reliability of water rights and changes in the demand for irrigation. J Water Resour Plann Manage. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000216,421-430

  • Momblanch A, Paredes-Arquiola J, Munné A, Manzano A, Arnau J, Andreu J (2015) Managing water quality under drought conditions in the Llobregat River Basin. Sci Total Environ 503– 504:300–318. https://doi.org/10.1016/j.scitotenv.2014.06.069

    Article  CAS  Google Scholar 

  • Mosley LM (2015) Drought impacts on the water quality of freshwater systems; review and integration. Earth-Sci Rev 140:203–214. https://doi.org/10.1016/j.earscirev.2014.11.010

    Article  CAS  Google Scholar 

  • Mosley LM, Zammit B, Leyden E, Heneker TM, Hipsey MR, Skinner D, Aldridge KT (2012) The impact of extreme low flows on the water quality of the lower Murray River and Lakes (South Australia). Water Resour Manag 26(13):3923–3946. https://doi.org/10.1007/s11269-012-0113-2

    Article  Google Scholar 

  • Mulholland PJ, Best GR, Coutant CC, Hornsberger GM, Meyer JL, Robinson PJ, Stenberg JR, Turner RE, Vera-Herrerra F, Wetzel R (1997) Effects of climate change on freshwater ecosystems of the south-eastern United States and the gulf coast of Mexico. Hydrol Process 11(8):949–970. https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8<949::AID-HYP513>3.0.CO;2-G

    Article  Google Scholar 

  • Muñoz AA, González-Reyes A, Lara A, Sauchyn D, Christie DA, Puchi P, Urrutia- Jalabert R, ToleDo-Guerrero I, Aguilera-Betti I, Mundo I, Sheppard PR, Stahle D, Villalba R, Szejner P, Lequesne C, Vanstone J (2016) Streamflow variability in the Chilean Temperate-Mediterranean climate transition (35°S–42°S) during the last 400 years inferred from tree-ring records. Clim Dyn 47(12):4051–4066. https://doi.org/10.1007/S00382-016-3068-9

    Article  Google Scholar 

  • Murdoch PS, Baron JS, Miller TL (2000) Potential effects of climate change on surface-water quality in North America. J Am Water Resour Assoc 36(2):347–366. https://doi.org/10.1111/j.1752-1688.2000.tb04273.x

    Article  CAS  Google Scholar 

  • National Climate Change Action Plan 2008-2012 National Environmental Commission, Department of Climate Change, Chile, 75 pp

  • Nosrati K, Kazemi Y (2011) Daily monitoring of drought and water resources in different climates of Iran. J Range Watershed Manag 64(1):79–94

    Google Scholar 

  • OECD (2016) Climate change impacts on water systems. 2013 https://wwwoecdorg/env/resources/Chilepdf, November 28, 2016

  • Olivera-Guerra L, Mattar C, Galleguillos M (2014) Estimation of real evapotranspiration and its variation in Mediterranean landscapes of central-southern Chile. Int J Appl Earth Obs Geoinf 28:160–169. https://doi.org/10.1016/j.jag.2013.11.012

    Article  Google Scholar 

  • Parra O, Figueroa R, Valdovinos C, Habit E, Díaz ME (2013) Programa de Monitoreo de la calidad del agua del Sistema río Biobío 1994–2012, Aplicación del anteproyecto de norma de la calidad del agua del río Biobío. Universidad de Concepción, Concepción, 165 pp

    Google Scholar 

  • Pizarro J, Vergara P, Rodríguez J, Sanhueza J, Castro J (2010) Nutrients dynamics in the main river basins of the centre-southern region of Chile. J Hazards Mater 175(1-3):608–613. https://doi.org/10.1016/j.jhazmat.2009.10.048

    Article  CAS  Google Scholar 

  • Prathumratana LS, Sthiannopkao K, Kim W (2008) The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environ Int 34(6):860–866. https://doi.org/10.1016/j.envint.2007.10.011

    Article  CAS  Google Scholar 

  • Sakalauskiene G, Ignatavicius G (2003) Research note effect of drought and fires on the quality of water in Lithuanian rivers. Hydrol Earth Syst Sci Discuss 7(3):423–427. https://doi.org/10.5194/hess-7-423-2003

    Article  CAS  Google Scholar 

  • Schindler DW, Bayley SE, Parker BR, Beaty KG, Cruikshank DR, Fee EJ, Schindler EU, Stainton MP (1996) The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol Oceanogr 41(5):1004–1017. https://doi.org/10.4319/lo.1996.41.5.1004

    Article  CAS  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389. https://doi.org/10.2307/2285891,JSTOR2285891,MR0258201

    Article  Google Scholar 

  • Smith LC (2000) Trends in Russian Arctic river-ice formation and breakup, 1917 to 1994. Physical Geography 20(1):46–56

  • Speed RA, Li Y, Tickner D, Huang H, Naiman RJ, Cao J, Lei G, Yu L, Sayers P, Zhao Z, Wei YA (2016) Framework for strategic river restoration in China. Water Int 41(7):998–1015. https://doi.org/10.1080/02508060.2016.1247311

    Article  Google Scholar 

  • Sprague LA (2005) Drought effects on water quality in the South Platte River Basin, Colorado. J Am Water Resour Assoc (JAWRA) 41(1):11–24. https://doi.org/10.1111/j.1752-1688.2005.tb03713.x

    Article  CAS  Google Scholar 

  • Stehr A, Debels P, Arumi JL (2008) Modelling hydrological response to climate change; experiences from two south-central Chilean Watersheds, in: Proceedings of the International Conference on Watershed Technology: Improving Water Quality and Environment. American Society of Agricultural and Biological Engineers, Concepción, Chile

  • Sun S, Sun G, Caldwell P, McNulty SG, Cohen E, Xiao J, Zhang Y (2015) Impacts of historic droughts on water yield and ecosystem productivity of the United States National Forests and Grasslands: model evaluation. For Ecol Manag 353:260–268. https://doi.org/10.1016/j.foreco.2015.03.054

    Article  Google Scholar 

  • Tolorza V, Carretier S, Andermann C, Ortega-Culaciati F, Pinto L, Mardones M (2014) Contrasting mountain and piedmont dynamics of sediment discharge associated with groundwater storage variation in the Biobío River. J Geophys Res Earth Surf 119(12):2730–2753. https://doi.org/10.1002/2014JF003105

    Article  Google Scholar 

  • Van Heemst C, Willems J, Weller A, Van Verseveld H, Caamaño D, Aránguiz R (2013) Flood defence alternatives for the lower Bío Bío River, Chile. Obras y Proyectos (14):22–33

  • Van Vliet MTH, Zwolsman JJG (2008) Impact of summer droughts on the water quality of the Meuse river. J Hydrol 353(1-2):1–17. https://doi.org/10.1016/j.jhydrol.2008.01.001

    Article  Google Scholar 

  • Vicuña S, Gironás J, Meza FJ, Cruzat ML, Jelinek M, Bustos E, Poblete D, Bambach N (2013) Exploring possible connections between hydrological extreme events and climate change in central south Chile. Hydrol Sci J 58(8):1598–1619. https://doi.org/10.1080/02626667.2013.840380

    Article  Google Scholar 

  • Wilbers GJ, Zwolsman G, Klaver G, Hendriks AJ (2009) Effects of a drought period on physico-chemical surface water quality in a regional catchment area. J Environ Monit 11(6):1298–1302. https://doi.org/10.1039/b816109g

    Article  CAS  Google Scholar 

  • Xia J, Cheng S, Xiuping H, Rui X, Xiaojie L (2010) Potential impacts and challenges of climate change on water quality and ecosystem: case studies in representative rivers in China. Journal of Resources and Ecology. Vol.1 No.1

  • Yevenes M, Arumí JL, Farias L (2016) Unravel biophysical factors on river water quality response in Chilean Central-Southern watersheds. Environ Monit Assess 188(5):264. https://doi.org/10.1007/s10661-016-5235-1

    Article  CAS  Google Scholar 

  • Ziellnski P, Gorniak A, Piekarski MK (2009) The effect of hydrological drought on chemical quality of water and dissolved organic carbon concentrations in lowland rivers. Pol J Ecol 57(2):217–227

    Google Scholar 

  • Zwolsman JJG, Van Bokhoven AJ (2007) Impact of summer drought on water quality of the Rhine River—a preview of climate change? Water Science & Technology 56(4):45–55. https://doi.org/10.2166/wst.2007.535

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Centro EULA-University of Concepcion and Centro de Recursos Hídricos para la Agricultura y la Minería (CRHIAM), supported by the CONICYT/FONDAP program 15130015, Conycit/Fondecyt project N° 3150162, and the Center for Climate and Resilience Research of the University of Concepción (CR2), which is supported by the CONICYT/FONDAP program 15110009; and the Dirección de Obras Hidráulicas and Dirección General de Aguas of Chile (DGA) for providing rainfall and discharge databases, and Dr. René Garreaud for their time to read this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariela A. Yevenes.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yevenes, M.A., Figueroa, R. & Parra, O. Seasonal drought effects on the water quality of the Biobío River, Central Chile. Environ Sci Pollut Res 25, 13844–13856 (2018). https://doi.org/10.1007/s11356-018-1415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1415-6

Keywords

Navigation