Skip to main content
Log in

Effective oil removal from water by magnetically driven superhydrophobic and oleophilic magnetic titania nanotubes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Development of efficient techniques to combat the harmful effects of oil spill is an emerging field, where fabrication of new sorbents for selective removal of oil has become a hot topic for environmental scientists. The present study reports the preparation of superhydrophobic/oleophilic magnetic titania nanotubes via a facile hydrothermal method, followed by the treatment with octadecylamine, as potential magnetically driven sorbent for selective removal of oil from water surface. The magnetic nature (superparamagnetism at 300 K) of the nanotubes enabled magnetic removal of the oil-sorbed material from water surface. Wettability test of the material depicted a static water contact angle of 166 ± 1°, indicating its superhydrophobic character. Oil uptake experiments and contact angle measurements revealed its superoleophilicity with maximum oil sorption capacity >1.5 g/g for a variety of oils. In addition to the ease of magnetic removal, the nanotubes possess sufficient buoyancy, high selectivity, and quick rate of oil uptake and is more than five times reusable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akhtar MS, Chun JM, Yang OB (2007) Advanced composite gel electrolytes prepared with titania nanotube fillers in polyethylene glycol for the solid-state dye-sensitized solar cell. Electrochem Commun 9:2833–2837

    Article  CAS  Google Scholar 

  • Arbatan T, Fang X, Shen W (2011) Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean-ups. Chem Eng J 166:787–791

    Article  CAS  Google Scholar 

  • Aw MS, Addai-Mensah J, Losic D (2012) A multi-drug delivery system with sequential release using titania nanotube arrays. Chem Commun 48:3348–3350

    Article  CAS  Google Scholar 

  • Balaur E, Macak JM, Taveira L, Schmuki P (2005) Tailoring the wettability of TiO2 nanotube layers. Electrochem Commun 7:1066–1070

    Article  CAS  Google Scholar 

  • Baowan D (2012) Modelling of carbon dioxide: methane separation using titanium dioxide nanotubes. J Math Chem 50:300–309

    Article  CAS  Google Scholar 

  • Bariana M, Aw MS, Moore E, Voelcker NH, Losic D (2014) Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants. Nanomedicine-Uk 9:1263–1275

    Article  CAS  Google Scholar 

  • Ceylan D, Dogu S, Karacik B, Yakan SD, Okay OS, Okay O (2009) Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater. Environ Sci Technol 43:3846–3852

    Article  CAS  Google Scholar 

  • Chen KS, Xie K, Feng XR, Wang SF, Hu R, Gu HS, Li Y (2012) An excellent room-temperature hydrogen sensor based on titania nanotube-arrays. Int J Hydrogen Energ 37:13602–13609

    Article  CAS  Google Scholar 

  • Cho SJ, Kim HJ, Lee JH, Choi HW, Kim HG, Chung HM, Do JT (2010) Silica coated titania nanotubes for drug delivery system. Mater Lett 64:1664–1667

    Article  CAS  Google Scholar 

  • Gao X, Xu LP, Xue Z, Feng L, Peng J, Wen Y, Wang S, Zhang X (2014) Dual-scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation. Adv Mater 26:1771–1775

    Article  CAS  Google Scholar 

  • Ge YH, Zhu WJ, Liu XR, Liu SQ (2012) Electrochemical fabrication of titania nanotube arrays with tunning nature of dimethyl sulfoxide and its application for hydrogen sensing. J Nanosci Nanotechnol 12:3026–3034

    Article  CAS  Google Scholar 

  • Guo M, Xie KY, Lin J, Yong ZH, Yip CT, Zhou LM, Wang Y, Huang HT (2012) Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy Environ Sci 5:9881–9888

    Article  CAS  Google Scholar 

  • Hosseini MG, Momeni MM (2012) Fabrication and photo-electrocatalytic activity of highly oriented titania nanotube loaded with platinum nanoparticles for electro-oxidation of lactose: a new recyclable electro-catalyst. J Mol Catal A-Chem 355:216–222

    Article  CAS  Google Scholar 

  • Hussein M, Amer AA, Sawsan II (2008) Oil spill sorption using carbonized pith bagasse: trial for practical application. Int J Environ Sci Technol 5:233–242

    Article  CAS  Google Scholar 

  • Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB (2008) Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J Am Chem Soc 130:13364–13372

    Article  CAS  Google Scholar 

  • Kapridaki C, Maravelaki-Kalaitzaki P (2013) TiO2-SiO2-PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog Org Coat 76:400–410

    Article  CAS  Google Scholar 

  • Lee C, Baik S (2010) Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity. Carbon 48:2192–2197

    Article  CAS  Google Scholar 

  • Li J, Kang R, Tang X, She H, Yang Y, Zha F (2016a) Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nano 8:7638–7645

    CAS  Google Scholar 

  • Li J, Li D, Yang Y, Li J, Zha F, Lei Z (2016b) A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation. Green Chem 18:541–549

    Article  CAS  Google Scholar 

  • Lin JY, Shang YW, Ding B, Yang JM, Yu JY, Al-Deyab SS (2012) Nanoporous polystyrene fibers for oil spill cleanup. Mar Pollut Bull 64:347–352

    Article  CAS  Google Scholar 

  • Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Ab Rahman MZ, Amin J (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548

    Article  CAS  Google Scholar 

  • Mandal SS, Jose D, Bhattacharyya AJ (2014) Role of surface chemistry in modulating drug release kinetics in titania nanotubes. Mater Chem Phys 147:247–253

    Article  CAS  Google Scholar 

  • Moise S, Céspedes E, Soukup D, Byrne JM, El Haj AJ, Telling ND (2017) The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Sci Rep 7:39922

    Article  CAS  Google Scholar 

  • Mor GK, Varghese OK, Paulose M, Grimes CA (2003) A self-cleaning, room-temperature titania-nanotube hydrogen gas sensor. Sens Lett 1:42–46

    Article  CAS  Google Scholar 

  • Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634

    Article  CAS  Google Scholar 

  • Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006a) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  • Mor GK, Varghese OK, Paulose M, Ong KG, Grimes CA (2006b) Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin Solid Films 496:42–48

    Article  CAS  Google Scholar 

  • Patowary M, Ananthakrishnan R, Pathak K (2014) Superhydrophobic and oleophilic barium sulfate material for oil spill clean-ups: fabrication of surface modified sorbent by a one-step interaction approach. J Environ Chem Eng 2:2078–2084

    Article  CAS  Google Scholar 

  • Patowary M, Ananthakrishnan R, Pathak K (2015) A facile preparation of superhydrophobic and oleophilic precipitated calcium carbonate sorbent powder for oil spill clean-ups from water and land surface. RSC Adv 5:79852–79859

    Article  CAS  Google Scholar 

  • Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 17:1446–1448

    Article  CAS  Google Scholar 

  • Qian L, Zhang T, Wageh S, Jin ZS, Du ZL, Wang YS, Xu XR (2006) Study of blue electroluminescence from titania nanotubes doped into a polymeric matrix. Nanotechnology 17:100–104

    Article  CAS  Google Scholar 

  • Rana M, Chen JT, Yang S, Ma PC (2016) Biomimetic superoleophobicity of cotton fabrics for efficient oil-water separation. Adv Mater Interfaces 3:1600128

    Article  Google Scholar 

  • Sakthivel T, Reid DL, Goldstein I, Hench L, Seal S (2013) Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environ Sci Technol 47:5843–5850

    Article  CAS  Google Scholar 

  • Sayed SA, Zayed AM (2006) Investigation of the effectiveness of some adsorbent materials in oil spill clean-ups. Desalination 194:90–100

    Article  CAS  Google Scholar 

  • Sayed SA, El Sayed AS, El Kareish SM, Zayed AM (2003) Treatment of liquid oil spill by untreated and treated aswanly clay from Egypt. J Appl Sci Environ Manag 7:25–35

    CAS  Google Scholar 

  • Sayed SA, El Sayed AS, Zayed AM (2004) Removal of oil spills from salt water by magnesium, calcium carbonates and oxides. J Appl Sci Environ Manag 8:71–78

    CAS  Google Scholar 

  • Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18:065707

    Article  Google Scholar 

  • Shen GX, Chen YC, Lin L, Lin CJ, Scantlebury D (2005) Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals. Electrochim Acta 50:5083–5089

    Article  CAS  Google Scholar 

  • Shuang Y, Hou Y, Zhang B, Yang HG (2013) Impurity-free synthesis of cube-like single-crystal anatase TiO2 for high performance dye-sensitized solar cell. Ind Eng Chem Res 52:4098–4102

    Article  CAS  Google Scholar 

  • Sidheswaran M, Tavlarides LL (2008) Visible light photocatalytic oxidation of toluene using a cerium-doped titania catalyst. Ind Eng Chem Res 47:3346–3357

    Article  CAS  Google Scholar 

  • Tamasauskaite-Tamasiunaite L, Balciunaite A, Vaiciukeviciene A, Selskis A, Norkus E (2013) Investigation of electrocatalytic activity of titania nanotube supported nanostructured Pt-Ni catalyst towards methanol oxidation. J Power Sources 225:20–26

    Article  CAS  Google Scholar 

  • Tang PF, Zhang W, Wang Y, Zhang BX, Wang H, Lin CJ, Zhang LH (2011) Effect of superhydrophobic surface of titanium on Staphylococcus aureus adhesion. J Nanomater 2011:178921

    Article  Google Scholar 

  • Tian YS, Hu CG, He XS, Cao CL, Huang GS, Zhang KY (2010) Titania nanotube arrays for light sensor and UV photometer. Sensors Actuators B Chem 144:203–207

    Article  CAS  Google Scholar 

  • Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M (2003) Hydrothermal synthesis of titania nanotube and its application for dye-sensitized solar cell. Stud Surf Sci Catal 146:791–794

    Article  CAS  Google Scholar 

  • Varghese OK, Gong DW, Paulose M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes. Sensors Actuators B Chem 93:338–344

    Article  CAS  Google Scholar 

  • Wadhwa S, Rea C, O’Hare P, Mathur A, Roy SS, Dunlop PSM, Byrne JA, Burke G, Meenan B, McLaughlin JA (2011) Comparative in vitro cytotoxicity study of carbon nanotubes and titania nanostructures on human lung epithelial cells. J Hazard Mater 191:56–61

    Article  CAS  Google Scholar 

  • Wang J, Lin ZQ (2010) Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem Mater 22:579–584

    Article  CAS  Google Scholar 

  • Wu T, Pan Y, Li L (2010) Study on superhydrophobic hybrids fabricated from multiwalled carbon nanotubes and stearic acid. J Colloid Interface Sci 348:265–270

    Article  CAS  Google Scholar 

  • Yang LX, He DM, Cai QY, Grimes CA (2007) Fabrication and catalytic properties of Co-Ag-Pt nanoparticle-decorated titania nanotube arrays. J Phys Chem C 111:8214–8217

    Article  CAS  Google Scholar 

  • Yu KP, Yu WY, Ku MC, Liou YC, Chien SH (2008) Pt/titania-nanotube: a potential catalyst for CO2 adsorption and hydrogenation. Appl Catal B-Environ 84:112–118

    Article  CAS  Google Scholar 

  • Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Monojit Chakraborty (Department of Chemical Engineering, IIT Kharagpur) for helping with the contact angle measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manoj Patowary or Rajakumar Ananthakrishnan.

Additional information

Responsible editor: Angeles Blanco

Electronic supplementary material

ESM 1

(PDF 330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patowary, M., Ananthakrishnan, R. & Pathak, K. Effective oil removal from water by magnetically driven superhydrophobic and oleophilic magnetic titania nanotubes. Environ Sci Pollut Res 24, 18063–18072 (2017). https://doi.org/10.1007/s11356-017-9458-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9458-7

Keywords

Navigation