Skip to main content
Log in

Alkaline-treated sawdust as an effective material for cationic dye removal from textile effluents under dynamic conditions: breakthrough curve prediction and mechanism exploration

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper deals with the methylene blue molecule (MB) removal from synthetic and real textile wastewaters by alkali-treated orange tree sawdust (ATOS) under different dynamic conditions. Experimental results showed that MB removal efficiencies by ATOS increased when increasing initial dye concentrations and bed depths but decreased with the increase of the applied flow rates with a maximum adsorption capacity of about 110 mg g−1. Moreover, various empirical models were applied to predict the experimental breakthrough curves (BTCs) and to determine the characteristic adsorption parameters. The applied models successfully fitted data in the following order: Thomas (\( {\overset{-}{R^2}}_{Th} \) = 0.969), dose response (\( {\overset{-}{R^2}}_{D- R} \) = 0.949), and Clark (\( {\overset{-}{R^2}}_{\mathrm{Clark}} \) = 0.874). ATOS was also found to efficiently remove dyes and other mineral pollutants such as chlorides, nitrates, and phosphates from real wastewaters. MB removal by ATOS involved not only cationic exchange but also complexation with acidic and basic functional groups. Moreover, important MB desorption yields from ATOS (more than 93%) were obtained when using saline solutions. All these results confirmed that NaOH-treated orange tree sawdust can be considered as a promising material for the removal of cationic dyes from industrial wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed ME, Tucker D, Dong Y et al (2016) Methylene Blue promotes cortical neurogenesis and ameliorates behavioral deficit after photothrombotic stroke in rats. Neuroscience 336:39–48. doi:10.1016/j.neuroscience.2016.08.036

    Article  CAS  Google Scholar 

  • Amirnia S, Ray MB, Margaritis A (2016) Copper ion removal by Acer saccharum leaves in a regenerable continuous-flow column. Chem Eng J 287:755–764. doi:10.1016/j.cej.2015.11.056

    Article  CAS  Google Scholar 

  • Azzaz AA, Jellali S, Assadi AA, Bousselmi L (2015) Chemical treatment of orange tree sawdust for a cationic dye enhancement removal from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat 3994:1–13. doi:10.1080/19443994.2015.1103313

    Google Scholar 

  • Azzaz AA, Jellali S, Akrout H et al (2016) Optimization of a cationic dye removal by a chemically modified agriculture by-product using response surface methodology: biomasses characterization and adsorption properties. Environ Sci Pollut Res 24:9831–9846 1–16. doi:10.1007/s11356-016-7698-6

    Article  Google Scholar 

  • Banat F (2007) Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal. Bioresour Technol 98:3017–3025. doi:10.1016/j.biortech.2006.10.023

    Article  CAS  Google Scholar 

  • Batzias FA, Sidiras DK (2007) Simulation of methylene blue adsorption by salts-treated beech sawdust in batch and fixed-bed systems. J Hazard Mater 149:8–17. doi:10.1016/j.jhazmat.2007.03.043

    Article  CAS  Google Scholar 

  • Bedekar PA, Bhalkar BN, Patil SM, Govindwar SP (2016) Moringa oleifera-mediated coagulation of textile wastewater and its biodegradation using novel consortium-BBA grown on agricultural waste substratum. Environ Sci Pollut Res 23:20963–20976 1–14. doi:10.1007/s11356-016-7279-8

    Article  CAS  Google Scholar 

  • Bretanha MS, Rochefort MC, Dotto GL et al (2016) Punica granatum husk (PGH), a powdered biowaste material for the adsorption of methylene blue dye from aqueous solution. Desalin Water Treat 57:3194–3204. doi:10.1080/19443994.2014.984344

    Article  CAS  Google Scholar 

  • Bulgariu D, Bulgariu L (2013) Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column. Bioresour Technol 129:374–380. doi:10.1016/j.biortech.2012.10.142

    Article  CAS  Google Scholar 

  • Calero M, Hernáinz F, Blázquez G et al (2009) Study of Cr (III) biosorption in a fixed-bed column. J Hazard Mater 171:886–893. doi:10.1016/j.jhazmat.2009.06.082

    Article  CAS  Google Scholar 

  • Calero M, Pérez A, Blázquez G et al (2013) Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead. Ecol Eng 58:344–354. doi:10.1016/j.ecoleng.2013.07.012

    Article  Google Scholar 

  • Cavas L, Karabay Z, Alyuruk H et al (2011) Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves. Chem Eng J 171:557–562. doi:10.1016/j.cej.2011.04.030

    Article  CAS  Google Scholar 

  • Chang B, Guan D, Tian Y et al (2013) Convenient synthesis of porous carbon nanospheres with tunable pore structure and excellent adsorption capacity. J Hazard Mater 262:256–264. doi:10.1016/j.jhazmat.2013.08.054

    Article  CAS  Google Scholar 

  • Chowdhury S, Saha PD (2013) Artificial neural network (ANN) modeling of adsorption of methylene blue by NaOH-modified rice husk in a fixed-bed column system. Environ Sci Pollut res 20:1050–1058. doi:10.1007/s11356-012-0912-2

    Article  CAS  Google Scholar 

  • Djilali Y, Elandaloussi EH, Aziz A, de Ménorval LC (2012) Alkaline treatment of timber sawdust: a straightforward route toward effective low-cost adsorbent for the enhanced removal of basic dyes from aqueous solutions. J Saudi Chem Soc 20:S241–S249

    Article  Google Scholar 

  • Elaissaoui I, Akrout H, Grassini S et al (2016) Role of SiOx interlayer in the electrochemical degradation of Amaranth dye using SS/PbO2 anodes. Mater Des 110:633–643. doi:10.1016/j.matdes.2016.08.044

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  • Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116:NA-NA. doi: 10.1002/app.31746

  • Han R, Wang Y, Zhao X et al (2009) Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalination 245:284–297. doi:10.1016/j.desal.2008.07.013

    Article  CAS  Google Scholar 

  • Han Y, Li W, Zhang J et al (2015) Adsorption behavior of Rhodamine B on nanoporous polymers. RSC Adv 5:104915–104922. doi:10.1039/C5RA21130A

    Article  CAS  Google Scholar 

  • Hong S, Wen C, He J et al (2009) Adsorption thermodynamics of Methylene Blue onto bentonite. J Hazard Mater 167:630–633. doi:10.1016/j.jhazmat.2009.01.014

    Article  CAS  Google Scholar 

  • Jansi Rani M, Murugan M, Subramaniam P, Subramanian E (2016) Study of water soluble dyes adsorption from aqueous solution by Prosopis spicigera L. Wood (PSLW) carbon. Indian J Chem Technol 23:22–30

    Google Scholar 

  • Jellali S, Benremita H, Muntzer P, Razakarisoa O (2003) A large-scale experiment on mass transfer of trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces. J Contam Hydrol 60:31–53

    Article  CAS  Google Scholar 

  • Jellali S, Diamantopoulos E, Kallali H et al (2010) Dynamic sorption of ammonium by sandy soil in fixed bed columns: evaluation of equilibrium and non-equilibrium transport processes. J Environ Manag 91:897–905. doi:10.1016/j.jenvman.2009.11.006

    Article  CAS  Google Scholar 

  • Jellali S, Diamantopoulos E, Haddad K et al (2016) Lead removal from aqueous solutions by raw sawdust and magnesium pretreated biochar: experimental investigations and numerical modelling. J Environ Manag 180:439–449. doi:10.1016/j.jenvman.2016.05.055

    Article  CAS  Google Scholar 

  • Kalavathy H, Karthik B, Miranda LR (2010) Colloids and surfaces B: biointerfaces removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: batch and column studies. Colloids Surf B Biointerfaces 78:291–302. doi:10.1016/j.colsurfb.2010.03.014

    Article  CAS  Google Scholar 

  • Kumar A, Jena HM (2016) Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. J Clean Prod 137:1246–1259. doi:10.1016/j.jclepro.2016.07.177

    Article  CAS  Google Scholar 

  • Lee EJ, Kim YH, Kim HS, Jang A (2015) Influence of microbubble in physical cleaning of MF membrane process for wastewater reuse. Environ Sci Pollut Res 22:8451–8459. doi:10.1007/s11356-014-3928-y

    Article  CAS  Google Scholar 

  • Leyva-Ramos R, Landin-Rodriguez L, Leyva-Ramos S, Medellin-Castillo N (2012) Modification of corncob with citric acid to enhance its capacity for adsorbing cadmium ( II ) from water solution. Chem Eng J 180:113–120. doi:10.1016/j.cej.2011.11.021

    Article  CAS  Google Scholar 

  • Li W, Yue Q, Tu P et al (2011) Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge. Chem Eng J 178:197–203. doi:10.1016/j.cej.2011.10.049

    Article  CAS  Google Scholar 

  • Long Y, Lei D, Ni J et al (2014) Packed bed column studies on lead(II) removal from industrial wastewater by modified Agaricus bisporus. Bioresour Technol 152:457–463. doi:10.1016/j.biortech.2013.11.039

    Article  CAS  Google Scholar 

  • Martín-Lara MA, Blázquez G, Ronda A et al (2012) Multiple biosorption-desorption cycles in a fixed-bed column for Pb(II) removal by acid-treated olive stone. J Ind Eng Chem 18:1006–1012. doi:10.1016/j.jiec.2011.11.150

    Article  Google Scholar 

  • Miran W, Nawaz M, Kadam A et al (2015) Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation. Environ Sci Pollut Res 22:13477–13485. doi:10.1007/s11356-015-4582-8

    Article  CAS  Google Scholar 

  • Mondal MK (2009) Removal of Pb(II) ions from aqueous solution using activated tea waste: adsorption on a fixed-bed column. J Environ Manag 90:3266–3271. doi:10.1016/j.jenvman.2009.05.025

    Article  CAS  Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80

    Article  CAS  Google Scholar 

  • Ren X, Zhang X, Zhang L, Han R (2013) Biosorption of methylene blue by natural and chemical modified wheat straw in fixed-bed column. Desalin Water Treat 51:4514–4523. doi:10.1080/19443994.2012.741776

    Article  CAS  Google Scholar 

  • Song J, Zou W, Bian Y et al (2011) Adsorption characteristics of methylene blue by peanut husk in batch and column modes. Desalination 265:119–125. doi:10.1016/j.desal.2010.07.041

    Article  CAS  Google Scholar 

  • Stawiński W, Węgrzyn A, Freitas O et al (2017) Simultaneous removal of dyes and metal cations using an acid, acid-base and base modified vermiculite as a sustainable and recyclable adsorbent. Sci Total Environ 576:398–408. doi:10.1016/j.scitotenv.2016.10.120

    Article  Google Scholar 

  • Tamez Uddin M, Rukanuzzaman M, Maksudur Rahman Khan M, Akhtarul Islam M (2009) Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: a fixed-bed column study. J Environ Manag 90:3443–3450. doi:10.1016/j.jenvman.2009.05.030

    Article  Google Scholar 

  • Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666. doi:10.1021/ja01238a017

    Article  CAS  Google Scholar 

  • Unuabonah EI, El-Khaiary MI, Olu-Owolabi BI, Adebowale KO (2012) Predicting the dynamics and performance of a polymer-clay based composite in a fixed bed system for the removal of lead (II) ion. Chem Eng Res Des 90:1105–1115. doi:10.1016/j.cherd.2011.11.009

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2007) Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behaviour. J Hazard Mater 147:120–132. doi:10.1016/j.jhazmat.2006.12.055

    Article  CAS  Google Scholar 

  • Wang S, Ma Q, Zhu ZH (2008) Characteristics of coal fly ash and adsorption application. Fuel 87:3469–3473. doi:10.1016/j.fuel.2008.05.022

    Article  CAS  Google Scholar 

  • Yan G, Viraraghavan T, Chen M (2001) A new model for heavy metal removal in a biosorption column. Adsorpt Sci Technol 19:25–43. doi:10.1260/0263617011493953

    Article  CAS  Google Scholar 

  • Zhang W, Dong L, Yan H et al (2011) Removal of methylene blue from aqueous solutions by straw based adsorbent in a fixed-bed column. Chem Eng J 173:429–436. doi:10.1016/j.cej.2011.08.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work has been carried out in the framework of a Tunisian national project. Financial support of this work by the Tunisian Ministry of Higher Education and Scientific Research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Jellali.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzaz, A.A., Jellali, S., Souissi, R. et al. Alkaline-treated sawdust as an effective material for cationic dye removal from textile effluents under dynamic conditions: breakthrough curve prediction and mechanism exploration. Environ Sci Pollut Res 24, 18240–18256 (2017). https://doi.org/10.1007/s11356-017-9388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9388-4

Keywords

Navigation