Skip to main content

Advertisement

Log in

Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.)

  • Environmental functions of biochar
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study analyzed the application of three microorganism inoculums, including Bacillus subtilis, Bacillus cereus, and commercial effective microorganism (EM) solution in order to determine cadmium (Cd) reduction in rice (Oryza sativa L.) and rice growth promotion. Rice was grown in Cd-contaminated soil (120 mg/kg) and selected microorganisms were inoculated. Cd concentration and rice weight were measured at 45 and 120 days of the experiment. The result showed that B. subtilis inoculation into rice can highly reduce Cd accumulation in every part of rice roots and shoots (45 days), and grains (120 days). This species can effectively absorb Cd compared to other inoculums, which might be the main mechanism to reduce Cd transportation in rice plants. Interestingly, plants that were inoculated with bacterial species individually harbored higher calcium (Ca) and magnesium (Mg) accumulation; B. subtilis-inoculated plants had the highest levels of Ca and Mg compared to other inoculated ones. Moreover, inoculating rice plants with these microorganisms could increase the dry weight of the plant and protect them from Cd stress because all the inoculums presented the ability to solubilize phosphate, produce indole-3-acetic acid (IAA), and control ethylene levels by 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. After 120 days, quantification of each inoculum by quantitative polymerase chain reaction (qPCR) confirmed the root colonization of bacterial species, with B. subtilis showing higher 16S rRNA gene copy numbers than the other species. B. subtilis was classified as a non-human pathogenic strain, reassuring the safe application of this plant growth-promoting bacterium as a crop inoculum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5:111–121

    Article  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ions removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465

    Article  CAS  Google Scholar 

  • Byers HK, Stackebrandt E, Hayward C, Blackall LL (1998) Molecular investigation of a microbial mat associated with the great artesian basin. FEMS Microbiol Ecol 25:391–403

    Article  CAS  Google Scholar 

  • Carter MR (1994) Soil sampling and method of analysis. Lewis Publishers, Boca Raton

    Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP (2012) Induction of plant growth promotion in Camellia sinensis by Bacillus megaterium and its bioformulations. World Journal of Agricultural Sciences 8(1):104–112

    Google Scholar 

  • Chaturvedi I (2004) Phytotoxicity of cadmium and its effect on two genotypes of Brassica juncea L. Emirates journal of agricultural sciences 16(2):01–08

    Google Scholar 

  • Cho SC, Cho YY, Kao CH (2012) Calcium deficiency increase Cd to toxicity and Ca is required for heat-shock induced Cd tolerance in rice seedlings. J Plant Physiol 169:892–898

    Article  CAS  Google Scholar 

  • Chou TS, Cho YY, Huang WD, Hong CY, Kao CH (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity. J Plant Physiol 168:1021–1030

    Article  CAS  Google Scholar 

  • Deng ZJ, Zhang RD, Shi Y, Hu LA, Tan HM, Cao LX (2014) Characterization of Cd-, Pb-, Zn-resistant endophytic sp. MXSF31 from metal accumulating and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res 21:2346–2357

    Article  CAS  Google Scholar 

  • Duan YQ, He ST, Li QQ, Wang MF, Wang WY, Zhe W, Cao YH, Mo MH, Zhai YL, Li WJ (2013) Lysinibacillus sp., Avicennia marina, a novel endophytic bacterium isolated from Nicotiana tabacum leaves. J Microbiol 51(3):289–294

    Article  CAS  Google Scholar 

  • Esringu A, Güneş A, Turan M, Karaman MR (2014) Roles of Bacillus megaterium in remediation of boron, lead, and cadmium from contaminated soil. Communication in soil science and plant analysis 45:1741–1759

    Article  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Garg N, Bhandari P (2014) Cadmium toxicity in crop plants and its alleviation by Arbuscular mycorrhizal (AM) fungi: an overview. Plant Biosystems 148:609–621

    Article  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indolacetic acid. Plant Physiol 26:192–195

    Article  CAS  Google Scholar 

  • Gutierrez-Segura S-RM, Colin-Cruz A, Fall C (2012) Adsorption of cadmium by Na and Fe modified zeolitic tuffs and carbonaceous material from pyrolyzed sewage sludge. The Journal of Environmental Management 97:6–13

    Article  CAS  Google Scholar 

  • Harmon M. E., Lajtha K., 1999. Analysis of detritus and organic horizons for minerals and organic constitutes. In: Robertson G. P., Coleman D. C., Bledsoe C. S., Sollins P. (eds) Standard soil method

  • Hilda R, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–359

    Article  Google Scholar 

  • Kashem MDA, Kawal S (2007) Alleviation of cadmium phyto toxicity by magnesium in Japanese mustard spinach. Soil Science and Plant Nutrition 53:246–251

    Article  CAS  Google Scholar 

  • Kathiresan K, Saravanakumar K, Sahu SK, Sivasankaran M (2014) Adenosine deaminase production by an endophytic bacterium (Lysinibacillus sp.) from Avicennia marina. 3 Biotech 4(3):235–239

    Article  Google Scholar 

  • Khaksar G, Siswanto D, Treesubsuntorn C, Thiravetyan P (2016a) Euphorbia milii-endophytic bacteria interactions affect hormonal levels of the native host differently under various airborne pollutants. Mol Plant-Microbe Interact 29:663–673

  • Khaksar G, Treesubsuntorn C, Thiravetyan P (2016b) Endophytic Bacillus cereus ERBP-Clitoria ternatea interactions: potentials for the enhancement of gaseous formaldehyde removal. Environ Exp Bot 126:10–20

    Article  CAS  Google Scholar 

  • Khaksar G, Treesubsuntorn C, Thiravetyan P (2016c) Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: potentials and challenges for airborne formaldehyde removal. Plant Physiol Biochem 107:326–336

    Article  CAS  Google Scholar 

  • Khaksar G, Treesubsuntorn C, Thiravetyan P (2017a) Euphorbia milii-native bacteria interactions under airborne formaldehyde stress: effect of epiphyte and endophyte inoculation in relation to IAA, ethylene and ROS levels. Plant Physiol Biochem 111:284–294

  • Khaksar G, Treesubsuntorn C, Thiravetyan P (2017b) Impact of endophytic colonization patterns on Zamioculcas zamiifolia stress response and in regulating ROS, tryptophan and IAA levels under airborne formaldehyde and formaldehyde-contaminated soil conditions. Plant Physiol Biochem 114:1–9

    Article  CAS  Google Scholar 

  • Khaksar G, Treesubsuntorn C, Thiravetyan P (2017c) Effect of exogenous methyl jasmonate on airborne benzene removal by Zamioculcas zamiifolia: the role of cytochrome P450 expression, salicylic acid, IAA, ROS and antioxidant activity. Environ Exp Bot 138:130–138

    Article  CAS  Google Scholar 

  • Li T, Liu MJ, Zhang XT, Zhang HB, Sha T, Zhao ZW (2011) Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci Total Environ 409:1069–1074

    Article  CAS  Google Scholar 

  • Lopez-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Interact 20:207–217

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo YM, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  Google Scholar 

  • Mastretta C, Taghavi S, Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2010) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International iournal of phytoremediation. 11(3):251–267

    Article  CAS  Google Scholar 

  • McGrath SP, Cunliffe CH (1985) A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co, Mn from soil and sewage sludges. J Sci Food Agric 36:794–798

    Article  CAS  Google Scholar 

  • Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot CK (2015) Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. J Basic Microbiol 55:33–44

    Article  CAS  Google Scholar 

  • Meng X, Yan D, Long X, Wang C, Liu Z, Rengel Z (2014) Colonization by endophytic Ochrobactrum anthropic Mn1 promotes growth of Jerusalem artichoke. Microb Biotechnol 7:601–610

    Article  CAS  Google Scholar 

  • Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID (2015) Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils. Front Microbiol 6:1450

    Article  Google Scholar 

  • Mohamed HM, Almaroai YA (2017) Effect of phosphate solubilizing bacteria on the uptake of heavy metals by corn plants in a long-term sewage wastewater treated soil. International journal of environmental science and development 8(5):366–371

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Iqbal M, Khan R, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1476–1489

    Article  CAS  Google Scholar 

  • Ortiz-Castro R, Martínez-Trujillo M, López-Bucio J (2008) N-acyl-L homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509

    Article  CAS  Google Scholar 

  • Ozturk L, Eker S, Ozkutlu F (2003) Effect of cadmium on growth and concentrations of cadmium, ascorbic acid and sulphydryl groups in durum wheat cultivars. Turk J Agric For 27:161–168

    CAS  Google Scholar 

  • Phaenark C, Pokethitiyook P, Kruatrachue M, Ngernsansaruay C (2009) Cd and Zn accumulation in plant from the Padaeng zinc mine. International journal of phytoremediation 11:479–495

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23:17859–17879

    Article  CAS  Google Scholar 

  • Rhoades JK (1982) Cation exchange capacity. In: Page AL (ed) Methods of soil analysis, part 2. Chemical and microbiological properties, 2nd edn. Agronomy Monograph 9, Madison (WI)

    Google Scholar 

  • Sao V, Nakbanpote W, Thiravetyan P (2006) Cadmium accumulation by Axonopus compressus (Sw.) P. Beauv and Cyperus rotundas Linn growing in cadmium solution and cadmium-zinc contaminated soil. Songklanakarin journal of science and technology 29:881–892

    Google Scholar 

  • Schmitz-Eiberger M, Haefs R, Noga G (2002) Calcium deficiency influence on the antioxidative defense system in tomato plants. J Plant Physiol 159:733–742

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  Google Scholar 

  • Simmons RW, Pongsakul D, Saiyasitpanich D, Klinphoklap S (2005) Elevated levels of cadmium and zinc in paddy soil and elevated of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ Geochem Health 27:501–511

    Article  CAS  Google Scholar 

  • Siripornadulsil S, Siripornadulsil W (2013) Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol Environ Saf 94:94–103

    Article  CAS  Google Scholar 

  • Suksabye P, Pimthong A, Dhurakit P, Mekvichitsaeng P, Thiravetyan P (2015) Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. Environ Sci Pollut Res 23(2):962–973

    Article  CAS  Google Scholar 

  • Swaddiwudhipong W, Limpatanachote P, Mahasakpan P, Krintratun S, Padungtod C (2007) Cadmium-exposed population in Mae Sot District, Tak Province: 1 prevalence of high urinary cadmium levels in the adults. J Med Assoc Thail 90:143–148

    Google Scholar 

  • Tian S, Lu L, Zhang J, Wang K, Brown P, He Z, Liang J, Yang X (2011) Calcium protects roots of Sedum alfredii H. against cadmium induced oxidative stress. Chemosphere 84:63–69

    Article  CAS  Google Scholar 

  • Walkley A, Black CA (1934) An examination of degradation method for determining soil organic matter: a proposed modification of the chromic acid titration method. Soil Sci 37:29–35

    Article  CAS  Google Scholar 

  • Wang J, Li T, Liu G, Smith J, Zhao MZ (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Scientific Report 6:22–28

    Article  CAS  Google Scholar 

  • Wu J, Dumat C, Lu H, Li Y, Li H, Xiao Y, Zhuang P, Li Z (2015) Synergistic improvement of crop physiological status by combination of cadmium immobilization and micronutrient fertilization. Environ Sci Pollut Res 23:6661–6670

    Article  CAS  Google Scholar 

  • Yilmaz EI, Ensari NY (2005) Cadmium biosorption by Bacillus circulans strain EB1. World J Microbiol Biotechnol 21:777

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support provided by King Mongkut’s University of Technology Thonburi through the “Kmutt 55th Anniversary Commemorative fund” and National Research University Project of Thailand, Office of the higher Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paitip Thiravetyan.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treesubsuntorn, C., Dhurakit, P., Khaksar, G. et al. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environ Sci Pollut Res 25, 25690–25701 (2018). https://doi.org/10.1007/s11356-017-9058-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9058-6

Keywords

Navigation