Skip to main content
Log in

The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape

  • Biomonitoring of atmospheric pollution: possibilities and future challenges
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Atmospheric dust pollution, especially particulate matter below 2.5 μm, causes 3.3 million premature deaths per year worldwide. Although pollution sources are increasingly well known, the role of ecosystems in mitigating their impact is still poorly known. Our objective was to investigate the role of forests located in the surrounding of industrial and urban areas in reducing atmospheric dust pollution. This was tested using lichen transplants as biomonitors in a Mediterranean regional area with high levels of dry deposition. After a multivariate analysis, we have modeled the maximum pollution load expected for each site taking into consideration nearby pollutant sources. The difference between maximum expected pollution load and the observed values was explained by the deposition in nearby forests. Both the dust pollution and the ameliorating effect of forested areas were then mapped. The results showed that forest located nearby pollution sources plays an important role in reducing atmospheric dust pollution, highlighting their importance in the provision of the ecosystem service of air purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul-Wahab SA (2006) Impact of fugitive dust emissions from cement plants on nearby communities. Ecol Model 195:338–348

    Article  Google Scholar 

  • Al-Khashman OA, Shawabkeh RA (2006) Metals distribution in soils around the cement factory in southern Jordan. Environ Pollut 140:387–394

    Article  CAS  Google Scholar 

  • Almeida SM, Pio CA, Freitas MC, Reis MA, Trancoso MA (2006) Approaching PM2.5 and PM2.5-10 source apportionment by mass balance analysis, principal component analysis and particle size distribution. Sci Total Environ 368:663–674

    Article  CAS  Google Scholar 

  • Augusto S, Máguas C, Branquinho C (2013a) Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses—a review. Environ Pollut 180:330–338

    Article  CAS  Google Scholar 

  • Augusto S, Pereira MJ, Máguas C, Branquinho C (2013b) A step towards the use of biomonitors as estimators of atmospheric PAHs for regulatory purposes. Chemosphere 95:626–632

    Article  Google Scholar 

  • Augusto S, Pinho P, Santos A, Botelho MJ, Palma-Oliveira J, Branquinho C (2016) Tracking the spatial fate of PCDD/F emissions from a cement plant by using lichens as environmental biomonitors. Environ Sci Technol 50:2434–2441

    Article  CAS  Google Scholar 

  • Augusto S, Pinho P, Branquinho C, Pereira MJ, Soares A, Catarino F (2004) Atmospheric dioxin and furan deposition in relation to land-use and other pollutants: a survey with lichens. J Atmos Chem 49:53–65

    Article  CAS  Google Scholar 

  • Augusto S, Pereira MJ, Soares A, Branquinho C (2007) The contribution of environmental biomonitoring with lichens to assess human exposure to dioxins. Int J Hyg Environ Health 210:433–438

    Article  CAS  Google Scholar 

  • Bari A, Rosso A, Minciardi MR, Troiani F, Piervittori R (2001) Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudoevernia furfuracea thalli. Environ Monit Assess 69:205–220

    Article  CAS  Google Scholar 

  • Baro F, Chaparro L, Gomez-Baggethun E, Langemeyer J, Nowak DJ, Terradas J (2014) Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain. Ambio 43:466–479

    Article  CAS  Google Scholar 

  • Barros C, Pinho P, Durão R, Augusto S, Máguas C, Pereira MJ, Branquinho C (2015) Disentangling natural and anthropogenic sources of atmospheric sulfur in an industrial region using biomonitors. Environ Sci Technol 49:2222–2229

    Article  CAS  Google Scholar 

  • Beckett KP, Freer-Smith P, Gail T (2000b) Effective tree species for local air quality management. Arboricultural J 26:12–18

    Google Scholar 

  • Beckett KP, Freer-Smith P, Taylor G (1998) Urban woodlands: their role in reducing the effects of particulate pollution. Environ Pollut 99:347–360

    Article  CAS  Google Scholar 

  • Beckett KP, Freer-Smith P, Gail T (2000a) The capture of particulate pollution by trees at five contrasting urban sites. Arboricultural J 24:209–230

    Article  Google Scholar 

  • Blett T, Geiser L, Porter E (2003) Air pollution-related lichen monitoring in national parks, forests and refuges: guidelines for studies intended for regulatory and management purposes. National Park Service, U.S. Fish and Wildlife Service and U.S. Forest Service

  • Branquinho C (2001). Lichens. Metals in the environment, analysis by biodiversity, Ed. MNV Prasad–Marcel Dekker Inc. New York, Basel, pp 117–157

  • Branquinho C, Catarino F, Brown DH, Pereira MJ, Soares A (1999) Improving the use of lichens as biomonitors of atmospheric metal pollution. Sci Total Environ 232:67–77

    Article  CAS  Google Scholar 

  • Branquinho C, Gaio-Oliveira G, Augusto S, Pinho P, Máguas C, Correia O (2008) Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry. Environ Pollut 151:292–299

    Article  CAS  Google Scholar 

  • Branquinho C, Matos P, Pinho P (2015) Lichens as ecological indicators to track atmospheric changes: future challenges. In: Lindenmayer DB, Pierson J, Barton P, Indicators and surrogates of biodiversity and environmental change. Melbourne: CSIRO Publishing. London: CRC Press, pp 77–90

  • Brantley HL, Hagler GSW, Deshmukh PJ, Baldauf RW (2014) Field assessment of the effects of roadside vegetation on near–road black carbon and particulate matter. Sci Total Environ 468:120–129

    Article  Google Scholar 

  • Brunialti G, Giordani P, Isocrono D, Loppi S (2002) Evaluation of data quality in lichen biomonitoring studies: the Italian experience. Environ Monit Assess 75:271–280

    Article  CAS  Google Scholar 

  • Calfapietra C, Fares S, Manes F, Morani A, Sgrigna G, Loreto F (2013) Role of biogenic volatile organic compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review. Environ Pollut 183:71–80

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163(3):319–332

    Article  CAS  Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114(3):471–492

    Article  CAS  Google Scholar 

  • Demuzere M, Orru K, Heidrich O, Olazabal E, Geneletti D, Orru H, Bhave AG, Mittal N, Feliu E, Faehnle M (2014) Mitigating and adapting to climate change: multi-functional and multi-scale assessment of green urban infrastructure. J Environ Manag 146:107–115

    Article  CAS  Google Scholar 

  • Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Drummond CH (2011) 71st Conference on Glass Problems: Ceramic Engineering and Science Proceedings, vol. 32

  • European Environmental Agency (EEA) (2012) EEA report no 2/2012: urban adaptation to climate change in Europe challenges and opportunities for cities together with supportive national and European policies. EEA, Copenhagen, p 148

    Google Scholar 

  • European Environmental Agency (EEA) (2016) CORINE Land Cover 2006. http://demo.copernicus.eea.europa.eu/pan-european/corine-land-cover. Accessed Jan 2017

  • EMEP (2013) EEA air pollutant emission inventory guidebook 2013. In: Agency, E.E. (Ed.), Copenhagen

  • Escobedo FJ, Kroeger T, Wagner JE (2011) Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollut 159:2078–2087

    Article  CAS  Google Scholar 

  • Gailey FAY, Smith GH, Rintoul LJ, Lloyd OL (1985) Metal deposition patterns in central Scotland, as determined by lichen transplants. Environ Monit Assess 5(3):291–309

    Article  CAS  Google Scholar 

  • Ganzach Y (1998) Nonlinearity, multicollinearity and the probability of type II error in detecting interaction. J Manage 24(5):615–622

    Google Scholar 

  • Gómez-Baggethun E, Barton DN (2013) Classifying and valuing ecosystem services for urban planning. Ecol Econ 86:235–245

    Article  Google Scholar 

  • Gravenhorst G, Höfken DK (1982) Concentration of aerosol constituents above and beneath a beech and a spruce forest canopy. In: H.-W. Georgii, J. Pankrath (eds). Deposition of atmospheric pollutants: Proceedings of a colloquium held at Oberursel/Taunus, West Germany, 9–11 November 1981. Springer Netherlands, 187–190

  • Henriques JF, Tavares PC, Correia-dos-Santos MM, Trancoso MA, Santos-Reis M, Branquinho C (2014) Monitoring Hg and Cd contamination using red swamp crayfish (Procambarus clarkii): implications for wetland food chain contamination. Water Air Soil Poll 225:2210

    Article  Google Scholar 

  • Huang CW, Lin MY, Khlystov A, Katul G (2013) The effects of leaf area density variation on the particle collection efficiency in the size range of ultrafine particles (UFP). Environ Sci Technol 47:11607–11615

    Article  CAS  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Braz Med B 68:425–462

    Google Scholar 

  • Jeran Z, Byrne AR, Batić F (1995) Transplanted epiphytic lichens as biomonitors of air contamination by natural radionuclides around the Žirowski Vrh Urbanium mine, Slovenia. Lichenologist 27(5):375–385

    Google Scholar 

  • Kalafatoglu E, Ors N, Ozdemir SS, Munlafalioglu I (2001) Trace element emissions from some cement plants in Turkey. Water Air Soil Poll 129:91–100

    Article  CAS  Google Scholar 

  • Kocić K, Spasić T, Urošević MA, Tomašević M (2014) Trees as natural barriers against heavy metal pollution and their role in the protection of cultural heritage. J Cult Herit 15(3):227–233

    Article  Google Scholar 

  • Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371

    Article  CAS  Google Scholar 

  • Matthews T, Lob AY, Byrneca JA (2015) Reconceptualizing green infrastructure for climate change adaptation: barriers to adoption and drivers for uptake by spatial planners. Landscape Urban Plan 138:155–163

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Chapter 16—nonmetric multidimensional scaling. In: McCune B, Grace JB (eds) Analysis of ecological communities. MJM Publishers, Oregon, pp 125–142

    Google Scholar 

  • Minchin PR (1987) An evaluation of relative robustness of techniques for ecological ordinations. Vegetatio 69:89–107

    Article  Google Scholar 

  • Morselli L, Brusori B, Passarini F, Gataleta L, Marchionni M, Aromolo R et al (2004) Heavy metals monitoring at a mediterranean natural ecosystem of Central Italy. Trends in different environmental matrixes. Environ Int 30:173–181

    Article  CAS  Google Scholar 

  • Munzi S, Correia O, Silva P, Lopes N, Freitas C, Branquinho C, Pinho P (2014) Lichens as ecological indicators in urban areas: beyond the effects of pollutants. J Appl Ecol 51:750–1757

    Article  Google Scholar 

  • National Research Council (1983). Risk assessment in the federal government: managing the process. National Research Council

    Google Scholar 

  • Nowak D, Jovan S, Branquinho C, Augusto S, Ribeiro MC, Kretsch CE (2015) Chapter 4: biodiversity, air quality and human health. In: Romanelli C, Cooper D, Campbell-Lendrum D, Maiero M, Karesh WB, Hunter D, Golden CD. Connecting global priorities-biodiversity and human health: a state of knowledge review. World Health Organization and Secretariat of the Convention on Biological Diversity, pp 63–74

  • Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Gree 4:115–123

    Article  Google Scholar 

  • Nowak DJ, Hirabayashi S, Bodine A, Hoehn R (2013) Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ Pollut 178:395–402

    Article  CAS  Google Scholar 

  • Nowak DJ, Hirabayashi S, Bodine A, Greenfield E (2014) Tree and forest effects on air quality and human health in the United States. Environ Pollut 193:119–129

    Article  CAS  Google Scholar 

  • Ny MT, Lee BK (2011) Size distribution of airborne particulate matter and associated metallic elements in an urban area of an industrial city in Korea. Aerosol Air Qual Res 11:643–653

    CAS  Google Scholar 

  • Ogunbileje JO, Sadagoparamanujam VM, Anetor JI, Farombi EO, Akinosun OM, Okorodudu AO (2013) Lead, mercury, cadmium, chromium, nickel, copper, zinc, calcium, iron, manganese and chromium (VI) levels in Nigeria and United States of America cement dust. Chemosphere 90:2743–2749

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology Package, R package version 2.0-7., http://CRAN.R-project.org/package=vegan

  • Oliveira AR, Branquinho C, Pereira M, Soares A (2013) Stochastic simulation model for the spatial characterization of lung cancer mortality risk and study of environmental factors. Math Geosci 45:437–452

    Article  Google Scholar 

  • Pal R, Mahima GA, Tripathi A (2014) Assessment of heavy metals in suspended particulate matter in Moradabad, India. J Environ Bio 35:357–361

    Google Scholar 

  • Pandolfi M, Querol X, Alastuey A, Jimenez JL, Jorba O, Day D et al (2014) Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: an overview of the DAURE campaign. J Geophys Res-Atmos 119:4978–5010

    Article  CAS  Google Scholar 

  • Passant NR, Peirce M, Rudd HJ, Scott DW, Marlowe I, Watterson JD (2002) UK particulate and heavy metal emissions from industrial processes. AEAT-6270 Issue 2. Oxfordshire, UK

  • Pinho P, Augusto S, Martins-Loução MA, Pereira MJ, Soares A, Máguas C, Branquinho C (2008) Causes of change in nitrophytic and oligotrophic lichen species in a Mediterranean climate: impact of land cover and atmospheric pollutants. Environ Pollut 154:380–389

    Article  CAS  Google Scholar 

  • Pinho P, Correia O, Lecoq M, Munzi S, Vasconcelos S, Goncalves P et al (2016) Evaluating green infrastructure in urban environments using a multi-taxa and functional diversity approach. Environ Res 147:601–610

    Article  CAS  Google Scholar 

  • Poličnik H, Batič F, Ribarič LC (2004) Monitoring of short-term heavy metal deposition by accumulation in epiphytic lichens (Hypogymnia physodes (L.) Nyl.) J Atmos Chem 49:223–230

    Article  Google Scholar 

  • Purvis OW (1996) Interactions of lichens with metals. Sci Prog 79:283–309

    CAS  Google Scholar 

  • Reinap A, Wiman BLB, Svenningsson B, Gunnarsson S (2009) Oak leaves as aerosol collectors: relationships with wind velocity and particle size distribution. Experimental results and their implications. Trees–Struct Funct 23:1263–1274

    Article  Google Scholar 

  • Ribeiro MC, Pinho P, Branquinho C, Llop E, Pereira MJ (2016) Geostatistical uncertainty of assessing air quality using high-spatial-resolution lichen data: a health study in the urban area of Sines, Portugal. Sci Total Environ 562:740–750

    Article  CAS  Google Scholar 

  • Saebo A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427:347–354

    Article  Google Scholar 

  • Stamenković SS, Mitrović TL, Cvetković VJ, Krstić NS, Baošić RM et al (2013) Biological indication of heavy metal pollution in the areas of Donje Vlase and Cerje (Southeastern Serbia) using epiphytic lichens. Arch Bio Sci 65:151–159

    Article  Google Scholar 

  • van Dobben HF, Wolterbeek HTH, Wamelink GWW, Ter Braak CJF (2001) Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environ Pollut 112:163–169

    Article  Google Scholar 

  • Vicente AB, Sanfeliu T, Jordan MM (2012) Assessment of PM10 pollution episodes in a ceramic cluster (NE Spain): proposal of a new quality index for PM10, As, Cd, Ni and Pb. J Environ Manag 108:92–101

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2007) Health risks of heavy metals from long range transboundary air pollution. WHO Regional Office for Europe, Copenhagen, Denmark

  • Wind Finder (2014) Estatísticas de vento & condições atmosféricas Leiria. Available from http://pt.windfinder.com/windstatistics/leiria. Accessed 22 May 2015

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology: 1–20

  • Yang J, McBride J, Zhou J, Sun Z (2005) The urban forest in Beijing and its role in air pollution reduction. Urban For Urban Gree 3:65–78

    Article  Google Scholar 

  • Zhenwu T, Qifei H, Yufei Y, Zhiqiang N, Jiali C, Jun Y, Yuwen W, Miao C (2016) Polybrominated diphenyl ethers (PBDEs) and heavy metals in road dusts from a plastic waste recycling area in north China: implications for human health. Environ Sci Pollut R 23:625–637

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from Secil Companhia Geral de Cal e Cimento S.A. and for the logistic support of Antonio Fernando Nunes during the sampling. We acknowledge FCT-MCTES for SFRH/BPD/75425/2010 and Investigador FCT contract and European Union Seventh Framework Programme (GreeenSurge-ENV.2013.6.2-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Pinho.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A., Pinho, P., Munzi, S. et al. The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape. Environ Sci Pollut Res 24, 12038–12048 (2017). https://doi.org/10.1007/s11356-017-8964-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8964-y

Keywords

Navigation