Skip to main content

Advertisement

Log in

Expression of the cyanobacterial enzyme cyanase increases cyanate metabolism and cyanate tolerance in Arabidopsis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cyanate and its derivatives are considered as environmental hazardous materials. Cyanate is released to the environment through many chemical industries and mining wastewater. Cyanase enzyme converts cyanate into CO2 and NH3 in a bicarbonate-dependent reaction. At low cyanate concentrations, the endogenous plant cyanases play a vital role in cyanate detoxification. However, such cyanate biodegradation system is probably insufficient due to the excess cyanate concentrations at contaminated sites. In this study, we have transferred the activity of the cyanobacterial cyanase into Arabidopsis thaliana plants in order to enhance plant resistance against cyanate toxicity. The enzyme was shown to be active in planta. Transgenic plants exposed to cyanate, either applied by foliar spray or supplemented in growth medium, showed less reduction in pigment contents, antioxidant enzymes, carbohydrate contents, and reduced levels of plant growth retardation. Plant growth assays under cyanate stress showed enhanced growth and biomass accumulation in cyanase overexpressors compared to control plants. Results of this study provide evidence for developing novel eco-friendly phytoremediation systems for cyanate detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aichi M, Nishida I, Omata T (1998) Molecular cloning and characterization of a cDNA encoding cyanase from Arabidopsis thaliana. Plant Cell Physiol 39:S135–S135

    Google Scholar 

  • Akcil A, Mudder T (2003) Microbial destruction of cyanide wastes in gold mining: process review. Biotechnol Lett 25:445–450

    Article  CAS  Google Scholar 

  • Anderson PM (1980) Purification and properties of the inducible enzyme cyanase. Biochemistry 19:2882–2888

    Article  CAS  Google Scholar 

  • Anderson PM, Little RM (1986) Kinetic properties of cyanase. Biochemistry 25:1621–1626

    Article  CAS  Google Scholar 

  • Anderson PM, Sung Y-C, Fuchs JA (1990) The cyanase operon and cyanate metabolism. FEMS Microbiol Rev 7:247–252

    Article  CAS  Google Scholar 

  • Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6:2542–2554

    Article  CAS  Google Scholar 

  • Blank CE, Hinman NW (2016) Cyanobacterial and algal growth on chitin as a source of nitrogen; ecological, evolutionary, and biotechnological implications. Algal Res 15:152–163

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bushey JT, Ebbs SD, Dzombak DA (2006) Development of a plant uptake model for cyanide. International Journal of Phytoremediation 8:25–43

    Article  CAS  Google Scholar 

  • Butryn A, Stoehr G, Linke-Winnebeck C, Hopfner K-P (2015) Serendipitous crystallization and structure determination of cyanase (CynS) from Serratia proteamaculans. Acta Crystallographica Section F: Structural Biology Communications 71:471–476. doi:10.1107/S2053230X15004902

    Article  CAS  Google Scholar 

  • Chomczynski P, Mackey K (1995) Substitution of chloroform by bromo-chloropropane in the single-step method of RNA isolation. Anal Biochem 225:163–164

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacteriumâ-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  Google Scholar 

  • Dirnhuber P, Schutz F (1948) The isomeric transformation of urea into ammonium cyanate in aqueous solutions. Biochem J 42:628

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ebbs S (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol 15:231–236

    Article  CAS  Google Scholar 

  • Elleuche S, Poggeler S (2008) A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora. Fungal Genet Biol 45:1458–1469

    Article  CAS  Google Scholar 

  • Espie GS, Jalali F, Tong T, Zacal NJ, So AK-C (2007) Involvement of the cynABDS operon and the CO2-concentrating mechanism in the light-dependent transport and metabolism of cyanate by cyanobacteria. J Bacteriol 189:1013–1024

    Article  CAS  Google Scholar 

  • Garcia I, Castellano JM, Vioque B, Solano R, Gotor C, Romero LC (2010) Mitochondrial β-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana. Plant Cell 22:3268–3279

    Article  CAS  Google Scholar 

  • Garcia-Fernandez JM, Diez J (2004) Adaptive mechanisms of nitrogen and carbon assimilatory pathways in the marine cyanobacteria Prochlorococcus. Res Microbiol 155:795–802

    Article  CAS  Google Scholar 

  • Grossmann K (1996) A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiol Plant 97:772–775

    Article  CAS  Google Scholar 

  • Guilloton M, Karst F (1987) Isolation and characterization of Escherichia coli mutants lacking inducible cyanase. Microbiology 133:645–653

    Article  CAS  Google Scholar 

  • Gyorgyey J, Dl V, Jimenez-Zurdo JI, Charon C, Troussard L, Kondorosi A, Kondorosi E (2000) Analysis of Medicago truncatula nodule expressed sequence tags. Mol Plant-Microbe Interact 13:62–71

    Article  CAS  Google Scholar 

  • Hamel J (2011) A review of acute cyanide poisoning with a treatment update. Crit Care Nurse 31:72–82

    Article  Google Scholar 

  • Harano Y, Suzuki I, Maeda S-I, Kaneko T, Tabata S, Omata T (1997) Identification and nitrogen regulation of the cyanase gene from the cyanobacteria Synechocystis sp. strain PCC 6803 and Synechococcus sp. strain PCC 7942. J Bacteriol 179:5744–5750

    Article  CAS  Google Scholar 

  • Johnson W, Anderson P (1987) Bicarbonate is a recycling substrate for cyanase. J Biol Chem 262:9021–9025

    CAS  Google Scholar 

  • Kamennaya NA, Post AF (2010) Characterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp. Appl Environ Microbiol 77:291–301. doi:10.1128/AEM.01272-10

    Article  Google Scholar 

  • Kamennaya NA, Chernihovsky M, Post AF (2008) The cyanate utilization capacity of marine unicellular Cyanobacteria. Limnol Oceanogr 53:2485

    Article  CAS  Google Scholar 

  • Kebeish R et al (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  CAS  Google Scholar 

  • Kebeish R, Aboelmy M, El-Naggar A, El-Ayouty Y, Peterhansel C (2015) Simultaneous overexpression of cyanidase and formate dehydrogenase in Arabidopsis thaliana chloroplasts enhanced cyanide metabolism and cyanide tolerance. Environ Exp Bot 110:19–26. doi:10.1016/j.envexpbot.2014.09.004

    Article  CAS  Google Scholar 

  • Kebeish R, El-Sayed A, Fahmy H, Abdel-Ghany A (2016) Molecular cloning, biochemical characterization, and antitumor properties of a novel L-asparaginase from Synechococcus elongatus PCC6803. Biochem Mosc 81:1173–1181. doi:10.1134/S000629791610014X

    Article  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet MGG 204:383–396

    Article  CAS  Google Scholar 

  • Koshiishi I, Mamura Y, Imanari T (1997) Cyanate causes depletion of ascorbate in organisms. Biochimica et Biophysica Acta (BBA)-General Subjects 1336:566–574

    Article  CAS  Google Scholar 

  • Kraus LM, Kraus AP (2001) Carbamoylation of amino acids and proteins in uremia. Kidney Int 59:S102–S107

    Article  Google Scholar 

  • Kumar R, Saha S, Dhaka S, Kurade MB, Kang CU, Baek SH, Jeon B-H (2016) Remediation of cyanide-contaminated environments through microbes and plants: a review of current knowledge and future perspectives Geosystem Engineering:1–13

  • Kunz DA, Nagappan O (1989) Cyanase-mediated utilization of cyanate in Pseudomonas fluorescens NCIB 11764. Appl Environ Microbiol 55:256–258

    CAS  Google Scholar 

  • Luque-Almagro VM et al (2008) Characterization of the Pseudomonas pseudoalcaligenes CECT5344 cyanase, an enzyme that is not essential for cyanide assimilation. Appl Environ Microbiol 74:6280–6288

    Article  CAS  Google Scholar 

  • Malhotra S, Pandit M, Kapoor J, Tyagi D (2005) Photo-oxidation of cyanide in aqueous solution by the UV/H2O2 process. J Chem Technol Biotechnol 80:13–19

    Article  CAS  Google Scholar 

  • Mc Mahon Smith J, Arteca RN (2000) Molecular control of ethylene production by cyanide in Arabidopsis thaliana. Physiol Plant 109:180–187

    Article  Google Scholar 

  • Mekuto L, Ntwampe S, Akcil A (2016) An integrated biological approach for treatment of cyanidation wastewater Science of The Total Environment

  • Miller AG, Espie GS (1994) Photosynthetic metabolism of cyanate by the cyanobacterium Synechococcus UTEX 625. Arch Microbiol 162:151–157

    Article  CAS  Google Scholar 

  • Niessen M, Thiruveedhi K, Rosenkranz R, Kebeish R, Hirsch H-J, Kreuzaler F, Peterhãnsel C (2007) Mitochondrial glycolate oxidation contributes to photorespiration in higher plants. J Exp Bot 58:2709–2715

    Article  CAS  Google Scholar 

  • Nowakowska M, Sterzel M, Szczubiałka K (2006) Photosensitized oxidation of cyanide in aqueous solutions of photoactive modified hydroxyethylcellulose. J Polym Environ 14:59–64

    Article  CAS  Google Scholar 

  • Nybom N (1955) The pigment characteristics of chlorophyll mutations in barley. Hereditas 41:483–498

    Article  Google Scholar 

  • O’Leary B, Preston GM, Sweetlove LJ (2014) Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis. Mol Plant 7:231–243

    Article  Google Scholar 

  • Palatinszky M et al (2015) Cyanate as an energy source for nitrifiers. Nature 524:105–108

    Article  CAS  Google Scholar 

  • Patil Y, Paknikar K (2000) Development of a process for biodetoxification of metal cyanides from waste waters. Process Biochem 35:1139–1151

    Article  CAS  Google Scholar 

  • Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kürkcüoglu S, Kreuzaler F (2010) Photorespiration. Arabidopsis Book 8:e0123

    Article  Google Scholar 

  • Qian D, Jiang L, Lu L, Wei C, Li Y (2011) Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa. PLoS One 6:e18300

    Article  CAS  Google Scholar 

  • Rader WS, Solujic L, Milosavljevic EB, Hendrix JL, Nelson JH (1995) Photocatalytic detoxification of cyanide and metal cyano-species from precious-metal mill effluents. Environ Pollut 90:331–334

    Article  CAS  Google Scholar 

  • Rasco-Gaunt S, Riley A, Lazzeri P, Barcelo P (1999) A facile method for screening for phosphinothricin (PPT)-resistant transgenic wheats. Mol Breed 5:255–262

    Article  Google Scholar 

  • Reichel C et al (1996) Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono-and dicotyledonous plant cells. Proc Natl Acad Sci 93:5888–5893

    Article  CAS  Google Scholar 

  • Sancho J, Bellen F (2005) Developments of an alternative technology to remove cyanide from mining wastewater. In: I9th International Mine Water Congress, pp 413–417

  • Sancho J, Bellon F (2005) Developments of an alternative technology to remove cyanide from mining wastewater. In: I9th International Mine Water Congress, pp 413–417

  • Srivastava AC, Muni RRD (2010) Phytoremediation of cyanide. In: Plant Adaptation and Phytoremediation. Springer, pp 399–426

  • Sung Y-C, Parsell D, Anderson P, Fuchs J (1987) Identification, mapping, and cloning of the gene encoding cyanase in Escherichia coli K-12. J Bacteriol 169:2639–2642

    Article  CAS  Google Scholar 

  • Taebi A, Jeirani K, Mirlohi A, Zadeh Bafghi A (2008) Phytoremediation of cyanide-polluted soils by non-woody plants. JWSS-Isfahan University of Technology 11:515–523

    Google Scholar 

  • Taussig A (1960) The synthesis of the induced enzyme, cyanase, in E. coli. Biochim Biophys Acta 44:510–519

    Article  CAS  Google Scholar 

  • Trapp S, Larsen M, Pirandello A, Danquah-Boakye J (2003) Feasibility of cyanide elimination using plants ejmp & ep. Eur J Miner Process Environ Prot 3:128–137

    Google Scholar 

  • Voigt K, Sharma CM, Mitschke J, Lambrecht SJ, Voss B, Hess WR, Steglich C (2014) Comparative transcriptomics of two environmentally relevant cyanobacteria reveals unexpected transcriptome diversity. The ISME journal 8:2056–2068

    Article  CAS  Google Scholar 

  • Walsh MA, Otwinowski Z, Perrakis A, Anderson PM, Joachimiak A (2000) Structure of cyanase reveals that a novel dimeric and decameric arrangement of subunits is required for formation of the enzyme active site. Structure 8:505–514

    Article  CAS  Google Scholar 

  • Xu P, Zou J, Meng Q, Zou J, Jiang W, Liu D (2008) Effects of Cd 2+ on seedling growth of garlic (Allium sativum L.) and selected physiological and biochemical characters. Bioresour Technol 99:6372–6378

    Article  CAS  Google Scholar 

  • Yu X-Z, Zhou P-H, Yang Y-M (2006) The potential for phytoremediation of iron cyanide complex by willows. Ecotoxicology 15:461–467

    Article  CAS  Google Scholar 

  • Yu X-Z, Lu P-C, Yu Z (2012) On the role of β-cyanoalanine synthase (CAS) in metabolism of free cyanide and ferri-cyanide by rice seedlings. Ecotoxicology 21:548–556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deanship of Scientific Research, Taibah University, KSA (project no. 6925) and partially supported by the Egyptian Science and Technology Development Fund (STDF). We are thankful to Dr. Ahmed Saleh and Dr. Ahmed Khalil (Biology Department, Faculty of Science-Yanbu, Taibah University) for the valuable discussion and correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashad Kebeish.

Additional information

Responsible editor: Yi-ping Chen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebeish, R., Al-Zoubi, O. Expression of the cyanobacterial enzyme cyanase increases cyanate metabolism and cyanate tolerance in Arabidopsis . Environ Sci Pollut Res 24, 11825–11835 (2017). https://doi.org/10.1007/s11356-017-8866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8866-z

Keywords

Navigation