Skip to main content
Log in

Two dechlorinated chlordecone derivatives formed by in situ chemical reduction are devoid of genotoxicity and mutagenicity and have lower proangiogenic properties compared to the parent compound

  • Environmental and human health issues related to pesticides: from usage and environmental fate to impact
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Chlordecone (CLD) is a chlorinated hydrocarbon insecticide, now classified as a persistent organic pollutant. Several studies have previously reported that chronic exposure to CLD leads to hepatotoxicity, neurotoxicity, raises early child development and pregnancy complications, and increases the risk of liver and prostate cancer. In situ chemical reduction (ISCR) has been identified as a possible way for the remediation of soils contaminated by CLD. In the present study, the objectives were (i) to evaluate the genotoxicity and the mutagenicity of two CLD metabolites formed by ISCR, CLD-5a-hydro, or CLD-5-hydro (5a- or 5- according to CAS nomenclature; CLD-1Cl) and tri-hydroCLD (CLD-3Cl), and (ii) to explore the angiogenic properties of these molecules. Mutagenicity and genotoxicity were investigated using the Ames’s technique on Salmonella typhimurium and the in vitro micronucleus micromethod with TK6 human lymphoblastoid cells. The proangiogenic properties were evaluated on the in vitro capillary network formation of human primary endothelial cells. Like CLD, the dechlorinated derivatives of CLD studied were devoid of genotoxic and mutagenic activity. In the assay targeting angiogenic properties, significantly lower microvessel lengths formed by endothelial cells were observed for the CLD-3Cl-treated cells compared to the CLD-treated cells for two of the three tested concentrations. These results suggest that dechlorinated CLD derivatives are devoid of mutagenicity and genotoxicity and have lower proangiogenic properties than CLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achard R, Cabidoche Y-M, Caron A et al. (2007) Contamination des racines et tubercules cultivés sur sol pollué par la chlordécone aux Antilles. Cah PRAM 45–50. http://agritrop.cirad.fr/547718/1/document_547718.pdf. Accessed November 18th 2016

  • Ames BN, Mccann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat Res 31:347–364

    Article  CAS  Google Scholar 

  • Badach H, Nazimek T, Kaminski R, Turski W (2000) Organochlorine pesticides concentration in the drinking water from regions of extensive agriculture in Poland. Ann Agric Environ Med AAEM 7:25–28

    CAS  Google Scholar 

  • Belghit H, Colas C, Bristeau S et al (2015) Liquid chromatography–high-resolution mass spectrometry for identifying aqueous chlordecone hydrate dechlorinated transformation products formed by reaction with zero-valent iron. Int J Environ Anal Chem 95:93–105. doi:10.1080/03067319.2014.994615

    Article  CAS  Google Scholar 

  • Bjørge C, Brunborg G, Wiger R et al (1996) A comparative study of chemically induced DNA damage in isolated human and rat testicular cells. Reprod Toxicol Elmsford N 10:509–519

    Article  Google Scholar 

  • Borenfreund E, Babich H, Martin-Alguacil N (1988) Comparisons of two in vitro cytotoxicity assays-the neutral red (NR) and tetrazolium MTT tests. Toxicol Vitro Int J Publ Assoc BIBRA 2:1–6

    Article  CAS  Google Scholar 

  • Bryant JD, Wilson JT (2003) In-situ chemical oxidation-reduction and precipitation of heavy metals in soils and groundwater. United States Patent US6623646 B2

  • Cabidoche Y-M, Achard R, Cattan P et al (2009) long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Environ Pollut Barking Essex 157:1697–1705. doi:10.1016/j.envpol.2008.12.015

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. doi:10.1038/nature10144

    Article  CAS  Google Scholar 

  • Carver RA, Griffith FD (1979) Determination of kepone dechlorination products in finfish, oysters, and crustaceans. J Agric Food Chem 27:1035–1037

    Article  CAS  Google Scholar 

  • Clere N, Lauret E, Malthiery Y et al (2012) Estrogen receptor alpha as a key target of organochlorines to promote angiogenesis. Angiogenesis 15:745–760. doi:10.1007/s10456-012-9288-7

    Article  CAS  Google Scholar 

  • Clostre F, Lesueur-Jannoyer M, Cadiboche Y-M (2010) Rémédiation à la pollution par la chlordécone aux Antilles. Cah PRAM 9–10. http://www.observatoire-eau-martinique.fr/les-outils/base-documentaire/conclusions-de-l2019atelier-abremediation-a-la-pollution-par-la-chlordecone-aux-antillesbb. Accessed November 18th 2016

  • Dallaire R, Muckle G, Rouget F et al (2012) Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environ Res 118:79–85. doi:10.1016/j.envres.2012.07.006

    Article  CAS  Google Scholar 

  • Delfosse V, Grimaldi M, Cavaillès V et al (2014) Structural and functional profiling of environmental ligands for estrogen receptors. Environ Health Perspect 122:1306–1313. doi:10.1289/ehp.1408453

    Article  CAS  Google Scholar 

  • End DW, Carchman RA, Dewey WL (1981) Neurochemical correlates of chlordecone neurotoxicity. J Toxicol Environ Health 8:707–718. doi:10.1080/15287398109530107

    Article  CAS  Google Scholar 

  • Faroon O, Kueberuwa S, Smith L, DeRosa C (1995) ATSDR evaluation of health effects of chemicals. II. Mirex and chlordecone: health effects, toxicokinetics, human exposure, and environmental fate. Toxicol Ind Health 11:1–203

    Article  CAS  Google Scholar 

  • Fenech M, Chang WP, Kirsch-Volders M et al (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75

    Article  CAS  Google Scholar 

  • Fintz M (2009) L’autorisation du Chlordécone en France 1968–1981, Rapport AFSSET; http://www.observatoire-pesticides.fr/upload/bibliotheque/457291400429630296486151015810/autorisation_chlordecone_france__1968_1981.pdf. Accessed January 3rd, 2017

  • Hammond B, Katzenellenbogen BS, Krauthammer N, McConnell J (1979) Estrogenic activity of the insecticide chlordecone (kepone) and interaction with uterine estrogen receptors. Proc Natl Acad Sci U S A 76:6641–6645

    Article  CAS  Google Scholar 

  • Heath CW (1978) Environmental pollutants and the epidemiology of cancer. Environ Health Perspect 27:7–10

    Article  Google Scholar 

  • Ikegwuonu FI, Mehendale HM (1991) Biochemical assessment of the genotoxicity of the in vitro interaction between chlordecone and carbon tetrachloride in rat hepatocytes. J Appl Toxicol JAT 11:303–310

    Article  CAS  Google Scholar 

  • Joly PB (2010) La saga du chlordécone aux Antilles françaises. Reconstruction chronologique 1968–2008. Rapport INRA Sens; http://www.observatoire-pesticides.fr/upload/bibliotheque/852173530783222242256849728077/saga_chlordecone_antilles_francaises_1968_2008.pdf. Accessed January 3rd, 2017

  • Kadhel P, Monfort C, Costet N et al (2014) Chlordecone exposure, length of gestation, and risk of preterm birth. Am J Epidemiol 179:536–544. doi:10.1093/aje/kwt313

    Article  Google Scholar 

  • Kim S-C, Yang JE, Ok YS et al (2010) Accelerated Metolachlor degradation in soil by Zerovalent iron and compost amendments. Bull Environ Contam Toxicol 84:459–464. doi:10.1007/s00128-010-9963-6

    Article  CAS  Google Scholar 

  • Mahon G, Green M, Middleton B et al (1989) Analysis of data from microbial colony assays. In: Kirkland DJ (ed) UKEMS sub-committee on guidelines for mutagenicity testing report: part III statistical evaluation of mutagenicity test data. Cambridge University Press, Cambridge, New York, pp 26–65

    Google Scholar 

  • Maron DM, Ames BN (1983) Revised methods for the salmonella mutagenicity test. Mutat Res 113:173–215

    Article  CAS  Google Scholar 

  • Mouvet C, Dictor M-C, Bristeau S et al (2016a) Remediation by chemical reduction in laboratory mesocosms of three chlordecone-contaminated tropical soils. Environ Sci Pollut Res Int. doi:10.1007/s11356-016-7582-4

    Article  Google Scholar 

  • Mouvet C, Collet B, Gaude JM et al. (2016b) Décontamination par In Situ Chemical Reduction d’un nitisol et d’un sol alluvionnaire pollués par la chlordécone. Résultats physico-chimiques et agronomiques. Rapport final. BRGM/RP-65462-FR, 188p., 61 ill., 61 tabl., 1 ann. http://infoterre.brgm.fr/rapports/RP-58704-FR.pdf. Accessed October 7th 2016

  • Mouvet C, Crouzet C, Bristeau S et al. (2016c) Sorption et désorption de la chlordécone et de deux de ses produits de dégradation formés par déchloration réductive. Rapport final. BRGM/RP-65357-FR, 34p., 6 fig., 10 tabl. http://infoterre.brgm.fr/rapports/RP-65357-FR.pdf. Accessed October 7th 2016

  • Multigner L, Kadhel P, Rouget F et al (2016) Chlordecone exposure and adverse effects in French West Indies populations. Environ Sci Pollut Res Int 23:3–8. doi:10.1007/s11356-015-4621-5

    Article  CAS  Google Scholar 

  • Multigner L, Ndong JR, Giusti A et al (2010) Chlordecone exposure and risk of prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol 28:3457–3462. doi:10.1200/JCO.2009.27.2153

    Article  CAS  Google Scholar 

  • Nesslany F, Simar-Meintières S, Ficheux H, Marzin D (2009) Aloe-emodin-induced DNA fragmentation in the mouse in vivo comet assay. Mutat Res 678:13–19. doi:10.1016/j.mrgentox.2009.06.004

    Article  CAS  Google Scholar 

  • OPECST (Office Parlementaire d’Evaluation des Choix Scientifiques et Technologiques; 2009). Rapport sur les impacts de l’utilisation de la Chlordécone et des pesticides aux Antilles : bilan et perspectives d’évolution, par M. Jean-Yves LE DÉAUT, député et Mme Catherine PROCACCIA, sénateur; http://www.senat.fr/rap/r08-487/r08-4871.pdf. Accessed January 3rd, 2017

  • Phillips TM, Lee H, Trevors JT, Seech AG (2004) Mineralization of hexachlorocyclohexane in soil during solid-phase bioremediation. J Ind Microbiol Biotechnol 31:216–222. doi:10.1007/s10295-004-0139-4

    Article  CAS  Google Scholar 

  • Phillips TM, Lee H, Trevors JT, Seech AG (2006) Full-scale in situ bioremediation of hexachlorocyclohexane-contaminated soil. J Chem Technol Biotechnol 81:289–298. doi:10.1002/jctb.1390

    Article  CAS  Google Scholar 

  • Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392

    Article  CAS  Google Scholar 

  • PNAC (2008) Plan d’action chlordécone en Martinique et en Guadeloupe: rapport interministériel d’activité (année 2009). http://agriculture.gouv.fr/telecharger/63798?token=aa65f5b7b786198cd89d253f56c23541.pdf. Accessed October 7th 2016

  • Reuber MD (1979) The carcinogenicity kepone. J Environ Pathol Toxicol 2:671–686

    CAS  Google Scholar 

  • Schoeny RS, Smith CC, Loper JC (1979) Non-mutagenicity for salmonella of the chlorinated hydrocarbons aroclor 1254, 1,2,4-trichlorobenzene, mirex and kepone. Mutat Res 68:125–132

    Article  CAS  Google Scholar 

  • Sirica AE, Wilkerson CS, Wu LL et al (1989) Evaluation of chlordecone in a two-stage model of hepatocarcinogenesis: a significant sex difference in the hepatocellular carcinoma incidence. Carcinogenesis 10:1047–1054

    Article  CAS  Google Scholar 

  • Soileau SD, Moreland DE (1983) Effects of chlordecone and its alteration products on isolated rat liver mitochondria. Toxicol Appl Pharmacol 67:89–99

    Article  CAS  Google Scholar 

  • Taylor JR (1982) Neurological manifestations in humans exposed to chlordecone and follow-up results. Neurotoxicology 3:9–16

    CAS  Google Scholar 

  • UNEP/POPS/POPRC.3/10 (2007) Projet d’évaluation de la gestion des risques : chlordécone. http://www.pops.int/documents/meetings/poprc_3/meetingdocs/poprc3_doc/10/K0762894.F_POPS_POPRC_3_10.pdf. Accessed January 3rd, 2017

  • Woignier T, Fernandes P, Jannoyer-Lesueur M, Soler A (2012) Sequestration of chlordecone in the porous structure of an andosol and effects of added organic matter: an alternative to decontamination. Eur J Soil Sci 63:717–723. doi:10.1111/j.1365-2389.2012.01471.x

    Article  CAS  Google Scholar 

  • Woignier T, Fernandes P, Soler A et al (2013) Soil microstructure and organic matter: keys for chlordecone sequestration. J Hazard Mater 262:357–364. doi:10.1016/j.jhazmat.2013.08.070

    Article  CAS  Google Scholar 

  • Yang L, Zhou B, Zha J, Wang Z (2016) Mechanistic study of chlordecone-induced endocrine disruption: based on an adverse outcome pathway network. Chemosphere 161:372–381. doi:10.1016/j.chemosphere.2016.07.034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The results presented here were obtained through financing by the French Ministry of Environment, General Directorate for Risk Prevention (action F of the 2015 grant program MEDDE/BRGM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Mouvet.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interests.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legeay, S., Billat, PA., Clere, N. et al. Two dechlorinated chlordecone derivatives formed by in situ chemical reduction are devoid of genotoxicity and mutagenicity and have lower proangiogenic properties compared to the parent compound. Environ Sci Pollut Res 25, 14313–14323 (2018). https://doi.org/10.1007/s11356-017-8592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8592-6

Keywords

Navigation