Skip to main content
Log in

Different physiobiochemical and transcriptomic reactions of rice (Oryza sativa L.) cultivars differing in terms of salt sensitivity under salinity stress

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Salinity stress is the most important and common environmental stresses throughout the world, including Iran. The aim of this study was to investigate the expression of several important genes involved in the salinity tolerance of the rice cultivars differing in salt sensitivity. In this research, the expression of four mitochondrial genes, H2O2, malondialdehyde (MDA), proline, sodium, potassium and superoxide dismutase (SOD), was measured in Iranian rice cultivars and two well-known international varieties as checks in response to 100 mM salt stress. The results show that the activity of SOD in the tolerant cultivars is much higher than in the susceptible ones under saline conditions (100 mM NaCl). The study of the gene expression in the tolerant and sensitive cultivars also showed that the expression of the genes increased in the early hours of the stress, with the exception of the OsGR1. Moreover, the amount of the expression in the tolerant cultivars was far more than the susceptible ones. The result of this study showed that the function of a set of antioxidant enzymes can lead to detoxification of the reactive oxygen species, so in order to better understand ROS scavengers, a comprehensive study on the antioxidant system should be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice sheath. Proteomics 4:2072–2081

    Article  CAS  Google Scholar 

  • Abdel Latef AA, Tran LSP (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7:243. doi:10.3389/fpls.2016.00243

    Article  Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174

    Article  CAS  Google Scholar 

  • Azuma R, Ito N, Nakayama N, Suwa R, Nguyen NT, Larrinaga-Mayoral JÁ, Esaka M, Fujiyama H, Saneoka H (2010) Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Sci Hort 125:171–178

    Article  CAS  Google Scholar 

  • Bates LS, Wladren PR, Tear DT (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Choukr AR (1996) The potential halophytes in the development and rehabilitation of arid and semiarid zones halophytes and Biosalin. Agriculture 5:3–13

    Google Scholar 

  • Ciarmiello LF, Woodrow P, Fuggi A, Pontecorvo G, Carillo P (2011) Plant genes for abiotic stress. In: Shanker A, Venkateswarlu B (ed) Abiotic stress in plants: mechanisms and adaptations. InTech, pp 284–308

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  Google Scholar 

  • Desingh R, Kanagaraj G (2007) Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. General Appl Plant Physiol 33:221–234

    CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • FAO (2007) Food and Agriculture Organization of the United Nations Desertification

  • Fry IV, Huflejt M, Erber WWA, Peschek GA, Packer L (1986) The role of respiration during adaptation of the freshwater Cyanobacterium synechococcus 6311 to salinity. Arch Biochem Biophys 244:686–691

    Article  CAS  Google Scholar 

  • Ghomi K, Rabiei B, Sabouri H, Sabouri A (2013) Mapping QTLs for traits related to salinity tolerance at seedling stage of rice (Oryza sativa L.): an agrigenomics study of an Iranian rice population. OMICS J Integr Biol 17:242–251

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  Google Scholar 

  • Herbette S, Lenne C, Leblanc N, Julien JL, Drevet JR, Roeckel Drevet P (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem 269:2414–2420

    Article  CAS  Google Scholar 

  • Hernandez JA, Aguilar AB, Portillo B, Lopez-Gomez E, Beneyto JM, Garcia-Legaz MF (2003) The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. Funct Plant Biol 30:1127–1137

    Article  CAS  Google Scholar 

  • Jana S, Choudhuri M (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  Google Scholar 

  • Jeanjean R, Matthijs HCP, Onana B, Havaux M, Joset F (1993) Exposure of the Cyanobacterium synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol 34:1073–1079

    CAS  Google Scholar 

  • Joseph EA, Mohanan KV, Radhakrishnan VV (2015) Effect of salinity variation on the quantity of antioxidant enzymes in some rice cultivars of North Kerala, India. Univers J Agric Res 3:89–105

    Google Scholar 

  • Jung BG, Lee KO, Lee SS, Chi YH, Jang HH, Kang SS (2002) A Chinese cabbage cDNA with high sequence identity to phospholipid hydroperoxide glutathione peroxidases encodes a novel isoform of thioredoxindependent peroxidase. J Biol Chem 277:12572–12578

    Article  CAS  Google Scholar 

  • Kamali E, Shahmohammadi Heydari Z, Heydari M, Feyzi M (2011) Effects of irrigation water salinity and leaching fraction on soil chemical characteristic, grain yield, yield components and cation accumulation in safflower in Esfehan. Iran J Field Crops Sci 6:339–545

    Google Scholar 

  • Kaouther Z, Nina H, Rezwan A, Cherif H (2013) Evaluation of salt tolerance (NaCl) in Tunisian chili pepper (Capsicum frutescens L.) on growth, mineral analysis and solutes synthesis. J Stress Physiol Biochem 9:209–228

    Google Scholar 

  • Kordrostami M, Rabiei B, Hassani Kumleh H (2016) Association analysis, genetic diversity and haplotyping of rice plants under salt stress using SSR markers linked to SalTol and morpho-physiological characteristics. Plant Syst Evol 7:871–890. doi:10.1007/s00606-016-1304-8

    Article  Google Scholar 

  • Lin CC, Kao CH (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135–143

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • López-Aguilar R, Medina-Hernández D, Ascencio-Valle F, Troyo-Dieguez E, Nieto-Garibay A, Arce-Montoya M, Larrinaga-Mayoral JA, Gómez-Anduro GA (2012) Differential responses of Chiltepin (Capsicum annuum var. glabriusculum) and Poblano (Capsicum annuum var. annuum) hot peppers to salinity at the plantlet stage. Afric J Biotechnol 11:2642–2653

    Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive indica rice (Oryza sativa L.) seedlings. Protoplasma 250:3–19

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400

    Article  CAS  Google Scholar 

  • Mohammadi-Nejad G, Singh RK, Arzani A, Rezaie AM, Sabouri H, Gregorio GB (2010) Evaluation of salinity tolerance in rice genotypes. Int J Pl Prod 4:199–208

    CAS  Google Scholar 

  • Momeni A (2010) The geographic distribution of soil salinity levels in Iran. Iran J Soil Res 24:203–215

    Google Scholar 

  • Moser D, Nicholls P, Wastyn M, Peschek GA (1991) Acidic cytochrome c6 of unicellular cyanobacteria is an indispensable and kinetically competent electron donor to cytochrome oxidase in plasma and thylakoid membranes. Int J Biochem 24:757–768

    CAS  Google Scholar 

  • Mousa MA, Al-Qurashi AD, Bakhashwain AA (2013) Response of tomato genotypes at early growing stages to irrigation water salinity. J Food Agric Environ 11:501–507

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Eenviron 25:239–250

    Article  CAS  Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Orcutt DM, Nilsen ET (2000) Physiology of plants under stress: soil and biotic factors. Wiley, New York

    Google Scholar 

  • Paul M, Hasegava A (1996) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Google Scholar 

  • Polidoros AN, Mylona PV, Arnholdt-Schmitt B (2009) AOX gene structure, transcript variation and expression in plants. Physiol Plant 137:342–353

    Article  CAS  Google Scholar 

  • Puri YP, Williams WA (1985) Evaluation of yield components as selection criteria in barley breeding. Crop Sci 22:927–931

    Article  Google Scholar 

  • Sabouri H, Rezai AM, Moumeni A (2008) Evaluation of salt tolerance in Iranian landrace and improved rice cultivars. J Sci Tech Agric Nat Reso (In Persian, Abs. in English)

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 122:487–494

    Article  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sakhno LO, Slyvets MS, Korol NA, Karbovska NV, Ostapchuk AM, Sheludko YV, Kuchuk MV (2014) Changes in fatty acid composition in leaf lipids of canola biotech plants under short-time heat stress. J Stress Physiol Biochem 10:24–34

    Google Scholar 

  • Slesak I, Miszalski Z, Karpinska B, Niewiadomska E, Ratajczak R, Karpinski S (2002) Redox control of oxidative stress responses in the C-3-CAM intermediate plant Mesembryanthemum crystallinum. Plant Physiol Biochem 40:669–677

    Article  CAS  Google Scholar 

  • Solomon A, Beer S (1994) Effect of NaCl on the carboxylating activity of rubisco and absence of proline related compatible solutes plant. Physiol 108:1387–1394

    Google Scholar 

  • Stepien P, Klobus G (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125:31–40

    Article  CAS  Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161:613–619

    Article  CAS  Google Scholar 

  • Tsai YC, Hong C-Y, Liu L-F, Kao H (2004) Relative importance of Na+ and Cl in NaCl-induced antioxidant systems in roots of rice seedlings. Physiol Plant 122:86–94

    Article  CAS  Google Scholar 

  • Van Weert F, Van der Gun J, Reckman J (2009) Global overview of saline groundwater occurrence and genesis. International Groundwater Resources Assessment Centre 105 pp

  • Wopereis MCS, Defoer T, Idinoba P, Diack S, Dugué MJ (2009) PLAR–IRM Curriculum: Technical Manual

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Rabiei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

The authors declare that the present study does not involve any human participants and/or animals.

Informed consent

The authors declare that the present study does not involve any informed consent.

Additional information

Responsible editor: Yi-ping Chen

Electronic supplementary material

Supplemental Fig. 1

(DOCX 474 kb)

Supplemental Fig. 2

(DOCX 48 kb)

Supplemental Fig. 3

(DOCX 48 kb)

Supplemental Fig. 4

(DOCX 34 kb)

Supplemental Fig. 5

(DOCX 24 kb)

Supplemental Fig. 6

(DOCX 18 kb)

Supplemental Fig. 7

(DOCX 25 kb)

Supplemental Table 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordrostami, M., Rabiei, B. & Kumleh, H.H. Different physiobiochemical and transcriptomic reactions of rice (Oryza sativa L.) cultivars differing in terms of salt sensitivity under salinity stress. Environ Sci Pollut Res 24, 7184–7196 (2017). https://doi.org/10.1007/s11356-017-8411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8411-0

Keywords

Navigation