Skip to main content

Advertisement

Log in

Critical analysis of excessive utilization of crude protein in ruminants ration: impact on environmental ecosystem and opportunities of supplementation of limiting amino acids—a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Protein quality plays a key role than quantity in growth, production, and reproduction of ruminants. Application of high concentration of dietary crude protein (CP) did not balance the proportion of these limiting amino acids (AA) at duodenal digesta of high producing dairy cow. Thus, dietary supplementation of rumen-protected AA is recommended to sustain the physiological, productive, and reproductive performance of ruminants. Poor metabolism of high CP diets in rumen excretes excessive nitrogen (N) through urine and feces in the environment. This excretion is usually in the form of nitrous oxide, nitric oxide, nitrate, and ammonia. In addition to producing gases like methane, hydrogen carbon dioxide pollutes and has a potentially negative impact on air, soil, and water quality. Data specify that supplementation of top-limiting AA methionine and lysine (Met + Lys) in ruminants’ ration is one of the best approaches to enhance the utilization of feed protein and alleviate negative biohazards of CP in ruminants’ ration. In conclusion, many in vivo and in vitro studies were reviewed and reported that low dietary CP with supplemental rumen-protected AA (Met + Lys) showed a good ability to reduce N losses or NH3. Also, it helps in declining gases emission and decreasing soil or water contamination without negative impacts on animal performance. Finally, further studies are needed on genetic and molecular basis to explain the impact of Met + Lys supplementation on co-occurrence patterns of microbiome of rumen which shine new light on bacteria, methanogen, and protozoal interaction in ruminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbasi IHR, Sahito HA, Abbasi F, Menghwar DR, Kaka NA, Sanjrani MI (2014) Impact of different crude protein levels on growth of lambs under intensive management system. Int J Adv Res 2:227–235

    Google Scholar 

  • Agle M, Hristov AN, Zaman S, Schneider C, Ndegwa P, Vaddella VK (2010) Effects of ruminally degraded protein on rumen fermentation and ammonia losses from manure in dairy cows. J Dairy Sci 93:1625–1637

    Article  CAS  Google Scholar 

  • Ali CS, Islam-Ud-Din SM, Nisa M, Javaid A, Hashmi N, Sarwar M (2009) Supplementation of ruminally protected proteins and amino acids: feed consumption, digestion and performance of cattle and sheep. Int J Agr Biol 11:477–482

    CAS  Google Scholar 

  • Archibeque SI, Burns JC, Huntington GB (2002) Nitrogen metabolism of beef steers fed endophyte-free tall fescue hay: effect of ruminally protected methionine supplementation. J Anim Sci 80:1344–1135

    Article  CAS  Google Scholar 

  • Armentano LE, Bertics SJ, Ducharme GA (1997) Response of lactating cows to methionine or methionine plus lysine added to high protein diets based on alfalfa and heated soybeans. J Dairy Sci 80:1194–1199

    Article  CAS  Google Scholar 

  • Armentano LE, Bertics SJ, Riesterer J (1993) Lack of response to addition of degradable protein to a low protein diet fed to mid lactation dairy cows. J Dairy Sci 76:3755–3762

    Article  CAS  Google Scholar 

  • Arogo J, Westerman P, Heber A (2003) A review of ammonia emissions from confined swine feeding operations. Transactions of the ASAE 46(3):805–817

    Article  Google Scholar 

  • Bashan DLE, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res 38(19):4222–4246

    Article  CAS  Google Scholar 

  • Bell AW, Slepetis R, Ehrhardt UA (1995) Growth and accretion of energy and protein in the gravid uterus during late pregnancy in Holstein cows. J Dairy Sci 78:1954–1961

    Article  CAS  Google Scholar 

  • Bequette BJ, Hanigan MD, Calder AG, Reynolds CK, Lobley GE, MacRae JC (2000) Amino acid exchange by the mammary gland of lactating goats when histidine limits milk production. J Dairy Sci 83:765–775

    Article  CAS  Google Scholar 

  • Bernard JK, Chandler PT, West JW, Parks AH, Amos HA, Froetschel MA, Trammell DS (2004) Effect of supplemental L-lysine–HCl and corn source on rumen fermentation amino acid follow to the small intestine. J Dairy Sci 87:399–405

    Article  CAS  Google Scholar 

  • Berthiaume R, Thivierge MC, Patton RA, Dubreuil P, Steveson M, McBride BW, Lapierre H (2006) Effect of ruminally protected methionine on splanchnic metabolism of amino acids in lactating dairy cows. J Dairy Sci 89:1621–1634

    Article  CAS  Google Scholar 

  • Bhatta R, Saravanan M, Baruah L, Prasad CS (2014) Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J Appl Microbiol 118:557–564

    Article  CAS  Google Scholar 

  • Bowmans L, Goldewijk KK, Van Der Hoek KW, Beusen AHW, Van Vuuren DP, Willems J, Rufino MC, Stehfest E (2013) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proce Nation Acade Sci 110(52):20882–20887

    Article  CAS  Google Scholar 

  • Broderick GA (2003) Effects of varying dietary protein and energy levels on the production of lactating dairy cows. J Dairy Sci 86:1370–1381

    Article  CAS  Google Scholar 

  • Broderick GA, Stevenson MJ, Patton RA, Lobos NE, Olmos CJJ (2008) Effect of supplementing rumen-protected methionine on production and nitrogen excretion in lactating dairy cows. J Dairy Sci 91:1092–1102

    Article  CAS  Google Scholar 

  • Bussink DW, Oenema O (1998) Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr Cycl Agro Ecosystems 51:19–33

    Article  Google Scholar 

  • Castillo AR, Kebreab E, Beever DE, Barbi JH, Sutton JD, Kirby HC, France J (2001) The effect of protein supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. J Anim Sci 79:247–253

    Article  CAS  Google Scholar 

  • Choi CW, Vanhatalo A, Ahvenjarvi S, Huhtanen P (2002) Effects of several protein supplements on flow of soluble non-ammonia nitrogen from the fore stomach and milk production in dairy cows. Anim Feed Sci Technol 102:15–33

    Article  CAS  Google Scholar 

  • Clark H, Kelliher F, Pinarespatino C (2011) Reducing CH4 emissions from grazing ruminants in New Zealand: challenges and opportunities. Asia-Aust J Anim Sci 24:295–302

    Article  CAS  Google Scholar 

  • Cole NA, Clark RN, Todd RW, Richardson CR, Gueye A, Greene LW, McBride K (2005) Influence of dietary crude protein concentration and source on potential ammonia emissions from beef cattle manure. J Anim Sci 83:722–731

    Article  CAS  Google Scholar 

  • Cole NA, Todd RW (2009) Nitrogen and phosphorus balance of beef cattle feed yards. In: E. Jordan (ed) Proceedings of the Texas animal manure management issues conference, Sept. 29–30. Round Rock, TX, pp. 17–24

  • Cottle DJ (1991) Australian sheep and wool handbook. Wronz Developments, Christchurch (New Zealand)

    Google Scholar 

  • Davidson S, Hopkins BA, Odie J, Brownie C, Feliner V, Whitlow LW (2008) Supplementing limited methionine diets with rumen-protected methionine, betaine and choline in early lavtation Holstein cows. J Dairy Sci 91:1552–1559

    Article  CAS  Google Scholar 

  • Devendra C, Imaizumi E (1989) Comparative aspects of digestive physiology and nutrition in goats and sheep in ruminant physiology and nutrition in Asia. Jap Soc Zootech Sci Sendai Japan, pp:45–60

  • Dijkstra J, VanZijderveld SM, Apajalahti JA, Bannink A, Gerrits WJJ, Newbold JR, Perdok HB, Berends H (2011) Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim Feed Sci Tech 166–167:590–595

    Article  CAS  Google Scholar 

  • Donkin SS, Varga A, Sweeney TF, Muller LD (1989) Rumen-protected methionine and lysine: effects on animal performance, milk protein yield and physiological measures. J Dairy Sci 72:1484–1491

    Article  CAS  Google Scholar 

  • Erickson G, Klopfenstein T (2010) Nutritional and management methods to decrease nitrogen losses from beef feedlots. J Anim Sci 88:172–180

    Article  Google Scholar 

  • Erisman JW, Bleeker A, Hensen A, Vermeulen A (2008) Agricultural air quality in Europe and the future perspectives. Atmosp Enviro 42(14):3209–3217

    Article  CAS  Google Scholar 

  • FAO (2006) Livestock’s long shadow—environmental issues and options by Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M. C Rome, DeHaan

    Google Scholar 

  • FAO (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities by Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A. G Rome, Tempio

    Google Scholar 

  • Ferla MP, Patrick WM (2014) Bacterial methionine biosynthesis. Microbiology 160(Pt 8):1571–1584

    Article  CAS  Google Scholar 

  • Gay SW, Knowlton KF (2009) Ammonia emission and animal agriculture. Publication 442–110. Petersburg, Virginia Polytechnic Institute and State University

  • Girard CL, Matte JJ (2005) Effect of intramuscular injections of vitamin B12 on lactation performance of dairy cows fed dietary supplements of folic acid and rumen-protected methionine. J Dairy Sci 88:671–676

    Article  CAS  Google Scholar 

  • Haque MN, Rulquin H, Andrade A, Faverdin P, Peyraud JL, Lemosquet S (2012) Milk protein synthesis in response to the provision of an “ideal” amino acid profile at 2 levels of metabolizable protein supply in dairy cows. J Dairy Sci 95:5876–5887

    Article  CAS  Google Scholar 

  • Hosam HT, Saleh IA, Mufeed AA (2013) Effect of protected methionine supplementation on milk production and reproduction in first calf heifers. Archiv Tierzucht 56(22):225–236

    Google Scholar 

  • Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51:364–376

    Article  CAS  Google Scholar 

  • Hristov AN, Jouany JP (2005) Factors affecting the efficiency of nitrogen utilization in the rumen. In: Pfeffer EE, Hristov AN (eds) Nitrogen and phosphorus nutrition of cattle: reducing the environmental impact of cattle operations. CAB International, Wallingford, UK, pp 117–166

    Chapter  Google Scholar 

  • Hristov AN, Ott T, Tricarico J, Rotz A, Waghorn G, Adesogan A (2013) Special topics mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J Anim Sci 91:5095–5113

    Article  CAS  Google Scholar 

  • Ikeuchi Y, Kimura S, Numata T, Nakamura D, Yokogawa T, Ogata T, Wada T, Suzuki T (2010) Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nat Chem Biol 6(4):277–282

    Article  CAS  Google Scholar 

  • Janssen PH (2010) Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 160:1–22

    Article  CAS  Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492

    Article  CAS  Google Scholar 

  • Johnson V, Wieringen LM, Harrison JH, Davidson D, Swift ML, VonKeyserlingk MAG, Vazquez AM, Wright D, Chalupa W (2007) Effects of rumen-undegradable protein sources and supplemental 2-hydroxy-4-(methylthio)-butanoic acid and lysine-Hcl on lactation performance in dairy cows. J Dairy Sci 90:5176–5188

    Article  CAS  Google Scholar 

  • Koenig KM, Newbold CJ, McIntosh FM, Rode LM (2000) Effects of protozoa on bacterial nitrogen recycling in the rumen. J Anim Sci 78:2431–2445

    Article  CAS  Google Scholar 

  • Krober TF, Kulling DR, Menzi H, Sutter F, Kreuzer M (2000) Quantitative effects of feed protein reduction and methionine on nitrogen use by cows and nitrogen emission from slurry. J Dairy Sci 83:2941–2951

    Article  CAS  Google Scholar 

  • Lapierre H, Pacheco D, Berthiaume R, Ouellet DR, Schwab CG, Dubreuil P, Holtrop G, Lobley GE (2006) What is the true supply of amino acids for a dairy cow. J Dairy Sci 89:1–14

    Article  Google Scholar 

  • Laudadio V, Tufarelli V (2010) Effects of pelleted total mixed rations with different rumen degradable protein on milk yield and composition of Jonica dairy goat. Small Rumin Res 90:47–52

    Article  Google Scholar 

  • Leonardi C, Stevenson M, Armentano LE (2003) Effect of two levels of crude protein and methionine supplementation on performance of dairy cows. J Dairy Sci 86:4033–4042

    Article  CAS  Google Scholar 

  • Liu D, Schingoethe DJ, Stegeman GA (2000) Corn distiller’s grains versus a blend of protein supplement with or without ruminally protected amino acids for lactating cows. J Dairy Sci 83:2075–2084

    Article  CAS  Google Scholar 

  • Lobley GE, Connell AM, Lomax A, Brown DS, Milne E, Calder AG, Farningham DAH (1995) Hepatic detoxification of ammonia in the ovine liver: possible consequences for amino acid catabolism. Br J Nutr 73:667–685

    Article  CAS  Google Scholar 

  • Losso I (1999) Fertilizer production and environmental protection: Petrokemija Ltd. fertilizer company. In: Proceedings of an international workshop on current environmental issues of fertilizer production. pp. 117–125. Prague, Czech Republic. International Fertilizer Development Center. p, 269

  • Luiting P (1990) Genetic variation of energy partitioning in laying hens: causes of variation in residual feed consumption. Worlds Poult Sci J 46(02):133–152

    Article  Google Scholar 

  • Majumdar D, Gupta N (2000) Nitrate pollution of groundwater and associated human health disorders. Indian J Environ Health 42(1):28–39

    CAS  Google Scholar 

  • Makkar HPS (2013) Towards sustainable animal diets. In proceedings of the FAO symposium optimization of feed use efficiency in ruminant production systems 16:67–74. Rome. FAO, p 121

  • McGinn S, Janzen H, Coates T (2003) Atmospheric ammonia, volatile fatty acids, and other odorants near beef feedlots. J Environ Qual 32(4):1173–1182

    Article  CAS  Google Scholar 

  • Misciattelli L, Krsitensen VF, Vestegaard M, Weisbjerg MR, Sejeren K, Hvelplund T (2003) Milk production, nutrient utilization and endocrine responses to increased post ruminal lysine and methionine supply in dairy cows. J Dairy Sci 86:275–286

    Article  CAS  Google Scholar 

  • National Research Council (NRC) (2001) Nutrient requirements of dairy cattle. Seventh revised edition. In: National academy press. USA, Washington DC

    Google Scholar 

  • Noftsger S, St-Pierre NR (2003) Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production. J Dairy Sci 86:958–969

    Article  CAS  Google Scholar 

  • Noftsger S, St-Pierre NR, Sylvester JT (2005) Determination of rumen degradability and ruminal effects of three sources of methionine in lactating cows. J Dairy Sci 88:223–237

    Article  CAS  Google Scholar 

  • Nosengo N (2003) Fertilized to death. Nature 425(6961):894–895

    Article  CAS  Google Scholar 

  • Overton TR, Lacount DW, Cicela TM, Clark JH (1996) Evaluation of a ruminally protected methionine product for lactating dairy cows. J Dairy Sci 79:631–638

    Article  CAS  Google Scholar 

  • Patton RA (2010) Effect of rumen-protected methionine on feed intake, milk production, true milk protein concentration, and true milk protein yield, and the factors that influence these effects: a meta-analysis. J Dairy Sci 93:2105–2118

    Article  CAS  Google Scholar 

  • Paul JW, Dinn NE, Kannangara T, Fisher LJ (1998) Protein content in dairy cattle diets affects ammonia losses and fertilizer nitrogen value. J Environ Qual 27:528–534

    Article  CAS  Google Scholar 

  • Piepenbrink MS, Overton TR, Clark JH (1996) Response of cows fed a low crude protein diet to ruminally protected methionine and lysine. J Dairy Sci 79:1638–1646

    Article  CAS  Google Scholar 

  • Polan CE, Cummins KA, Sniffen CJ, Muscato TV, Vicini JL, Crooker BA, Clark JH, Johnson DG, Otterby DE, Guillaume B, Muller LD, Varga GA, Murray RA, Peirce-Sandner SB (1991) Response of dairy cows to supplemental rumen-protected forms of methionine and lysine. J Dairy Sci 74:2997–3013

    Article  CAS  Google Scholar 

  • Powell JM, Broderick GA (2011) Trandisciplinary soil science research: impacts of dairy nutrition on manure chemistry and the environment. Soil Sci Soc Am J 75:2071–2078

    Article  CAS  Google Scholar 

  • Pruekvimolphan S, Grummer RR (2001) Lactation response to sulphur-containing amino acid from feather meal or rumen-protected methionine. J Dairy Sci 84:2515–2522

    Article  CAS  Google Scholar 

  • Reynal SM, Broderick GA (2005) Effect of dietary level of rumen-degraded protein on production and nitrogen metabolism in lactating dairy cows. J Dairy Sci 88:4045–4064

    Article  CAS  Google Scholar 

  • Schwab CG, Bozak CK, Whitehouse NL (2003) Amino acid balancing in the context of MP and RUP requirements. In: Proc. four-state applied nutrition and management conference. Lacrosse, USA, 25–34

  • Schwab CG, Ordway RS, Whitehouse NL, Mesbah MMA (1992) Amino acid limitation and flow to the duodenum at four stages of lactation.1. Sequence of lysine and methionine limitation. J Dairy Sci 75:3486–3502

    Article  CAS  Google Scholar 

  • Socha MT, Putnam DE, Garthwaite BD, Whitehouse NL, Kierstead NA (2005) Amino acid supply of pre- and postpartum dairy cows with rumen protected methionine and lysine. J Dairy Sci 88:1113–1126

    Article  CAS  Google Scholar 

  • Socha MT, Schwab CG (1994) Developing dose-response relationships for absorbable lysine and methionine supplies in relation to milk and milk protein production from published data using the Net Cornell Carbohydrate and Protein System. J Dairy Sci 77(Suppl.1):92

    Google Scholar 

  • Sommer SG, Schjoerring JK, Denmead O (2004) Ammonia emission from mineral fertilizers and fertilized crops. Adv Agron 82:557–622

    Article  CAS  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, DeHaan C (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome

    Google Scholar 

  • Tamminga S (1992) Nutrition management of dairy cows as a contribution to pollution control. J Dairy Sci 75:345–357

    Article  Google Scholar 

  • Tamminga S (1996) A review on environmental impacts of nutritional strategies in ruminants. J Anim Sci 74:3112–3124

    Article  CAS  Google Scholar 

  • Trinacty J, Krizova L, Hadrova S, Hanus O, Janstova B, Vorlova L, Drackova M (2006) Effect of rumen protected protein supplemented with three amino acids on milk yield, composition and fatty acid profile in dairy cows. J Anim and Feed Sci 15:3–15

    Article  Google Scholar 

  • Trinacty J, Krizova L, Richter M, Cerny V, Riha J (2009) Effect of rumen-protected methionine, lysine or both on milk production and plasma amino acids of high-yielding dairy cows. Czech J Anim Sci 54:239–248

    Article  CAS  Google Scholar 

  • Tufarelli V, Dario M, Laudadio V (2009a) Milk yield and composition of lactating Comisana ewes fed total mixed rations containing nitrogen sources with different ruminal degradability. Livest Sci 122:349–353

    Article  Google Scholar 

  • Tufarelli V, Dario M, Laudadio V (2009b) Influence of dietary nitrogen sources with different ruminal degradability on growth performance of Comisana ewe lambs. Small Rumin Res 81:132–136

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2004) Air quality criteria for particulate matter. Vol I. USEPA, Washington, DC

  • VandeHaar MJ, St-Pierre N (2006) Major advances in nutrition: relevance to the sustainability of the dairy industry. J Dairy Sci 89:1280–1291

    Article  CAS  Google Scholar 

  • Vander Pol PM, Hristov AN, Zaman S, Delano N (2006) Peas can replace soybean meal and corn grain in dairy cow diets. J Dairy Sci 91:698–703

    Google Scholar 

  • van der Maas CWM, Coenen PWHG, Zijlema PJ, Baas K, van den Berghe ACWM, van Huis EP, Brandt AT, Droge R, Guis B, Geilenkirchen G, te Molder, R TeMolder R, Nijdam DS, Peek CJ (2010) Greenhouse gas emissions in the Netherlands 1990–2008

  • Vanhatalo A, Varvikko T, Huhtanen P (2003) Effects of casein and glucose on responses of cows fed diets based on restrictively fermented grass silage. J Dairy Sci 86:3260–3270

    Article  CAS  Google Scholar 

  • Vasconcelos JT, Greene LW, Cole NA, Brown MS, McCollum FT, Tedeschi LO (2007) Effects of phase feeding of protein on performance, blood urea nitrogen concentration, manure nitrogen: phosphorus ratio, and carcass characteristics of feedlot cattle. J Anim Sci 84:3032–3038

    Article  CAS  Google Scholar 

  • Wathes CM, Demmers TGM, Teer N, White RP, Taylor LL, Bland V, Jones P, Armstrong D, Gresham ACJ, Hartung J (2004) Production responses of weaned pigs after chronic exposure to airborne dust and ammonia. J Anim Sci 78(1):87–98

    Article  CAS  Google Scholar 

  • Weiss WP, St-Pierre NR, Willett LB (2009) Varying type of forage, concentration of metabolizable protein and source of carbohydrate affects nutrient digestibility and production by dairy cows. J Dairy Sci 92:5595–5606

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2005) Air quality and health. [Online] Available: http://www.who.int/mediacentre/factsheets/fs313/en/index.html. Accessed 08 Apr 2010

  • Wright RF, Alewell C, Cullen JM, Evans CD, Marchetto A, Moldan F, Prechtel A, Rogora M (2001) Trends in nitrogen deposition and leaching in acid sensitive streams in Europe. Hydrol Earth Syst Sci Discuss 5(3):299–310

    Article  Google Scholar 

  • Wu Z, Satter LD (2000) Milk production during the complete lactation of dairy cows fed diets containing different amounts of protein. J Dairy Sci 83:1042–1051

    Article  CAS  Google Scholar 

  • Xu S, Harrison JH, Chalupa W, Sniffen C, Julien W, Sato H, Fujieda T, Watanabe K, Ueda T, Suzuki H (1998) The effect of ruminal bypass lysine and methionine on milk yield and composition of lactating cows. J Dairy Sci 81:1062–1077

    Article  CAS  Google Scholar 

  • Yan T, Mayne CS, Gordon FG, Porter MG, Agnew RE, Patterson DC, Ferris CP, Kilpatrick DJ (2010) Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. J Dairy Sci 93:2630–2638

    Article  CAS  Google Scholar 

  • Zhang B, Chen GQ (2010) Methane emissions by Chinese economy: inventory and embodiment analysis. Energy Policy 38(8):4304–4316

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junhu Yao or Yangchun Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, I.H.R., Abbasi, F., Abd El-Hack, M.E. et al. Critical analysis of excessive utilization of crude protein in ruminants ration: impact on environmental ecosystem and opportunities of supplementation of limiting amino acids—a review. Environ Sci Pollut Res 25, 181–190 (2018). https://doi.org/10.1007/s11356-017-0555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0555-4

Keywords

Navigation