Skip to main content
Log in

Comparing discrimination capabilities of fluorescence spectroscopy versus FT-ICR-MS for sources and hydrophobicity of sediment organic matter

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Characterizing the chemical and molecular composition of sediment organic matter (SeOM) provides critical information for a complete picture of global carbon and nutrient cycles, and helps to track the sources and the fate of organic carbon in aquatic environments. In this study, we examined fluorescence properties and the molecular composition of the alkaline-extractable organic matter (AEOM) of sediments in a coastal lake (Lake Sihwa) and its surrounding creeks (rural, urban, wetland, and industrial areas). Five fluorescence-based indices and 20 molecular parameters were selected from fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), respectively, and utilized to discriminate the AEOM among five different sources as well as the chemical composition of hydrophobic acid (HoA) and hydrophilic (Hi) fractions. Ordination based on Bray–Curtis dissimilarity matrices showed that the fluorescence-based indices distinguished among urban, lake, and the three other sources, while the molecular parameters from FT-ICR-MS performed better in discriminating among the sources of rural, wetland, and industrial areas. Irrespective of the sources, the two different chemical fractions were statistically distinguished by their relative distributions of the UVA-humic-like fluorescent component and the carbohydrate molecular group. However, a rigorous test based on percent dissimilarities indicated no superior capability of either of the two tools in discriminating the sources or their two chemical fractions, which might be attributed to the inherent structural heterogeneity of SeOM and the limited analytical window of FT-ICR-MS for relatively large-sized molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Birdwell JE, Engel AS (2010) Characterization of dissolved organic matter in cave and spring waters using UV–vis absorbance and fluorescence spectroscopy. Org Geochem 41:270–280

    Article  CAS  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Burone L, Muniz P, Pirez-Vanin AMS, Rodrigues M (2003) Spatial distribution of organic matter in the surface sediments of Ubatuba Bay (southeastern – Brazil). Ann Braz Acad Sci 75:77–90

    Article  Google Scholar 

  • Carstea EM, Bridgeman J, Baker A, Reynolds DM (2016) Fluorescence spectroscopy for wastewater monitoring: a review. Water Res 95:205–219

    Article  CAS  Google Scholar 

  • Cawley KM, Ding Y, Fourqurean J, Jaffé R (2012a) Characterizing the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes. Mar Freshw Res 63:1098–1107

    Article  CAS  Google Scholar 

  • Cawley KM, Butler KD, Aiken GR, Larsen LG, Huntington TG, McKnight DM (2012b) Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed. Mar Pollut Bull 64:1678–1687

    Article  CAS  Google Scholar 

  • Chen J, Gu B, LeBoeuf EJ, Pan H, Dai S (2002) Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 48:59–68

    Article  CAS  Google Scholar 

  • Chen M, Kim S, Park J-E, Kim HS, Hur H (2016a) Effects of dissolved organic matter (DOM) sources and the nature of solid extraction sorbent on the recoverable DOM composition: implications into potential lability of different compound groups. Anal Bioanal Chem 408:4809–4819

    Article  CAS  Google Scholar 

  • Chen M, Kim S, Park J-E, Jung H-J, Hur H (2016b) Structural and compositional changes of dissolved organic matter upon solid-phase extraction tracked by multiple analytical tools. Anal Bioanal Chem 23:6249–6258

    Article  Google Scholar 

  • D’Andrilli J, Foreman CM, Marshall AG, McKnight DM (2013) Characterization of the IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy. Org Geochem 65:19–28

    Article  Google Scholar 

  • Derrien M, Yang L, Hur J (2017) Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: a review. Water Res 112:58–71

    Article  CAS  Google Scholar 

  • Dilling J, Kaiser K (2002) Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry. Water Res 36:5037–5044

    Article  CAS  Google Scholar 

  • Ferrier S, Manion G, Elith J, Richardson K (2007) Using generalized dissimilarity modeling to analyze and predict patterns of beta diversity in regional diversity assessment. Divers Distrib 13:252–264

    Article  Google Scholar 

  • Fichot CG, Kaiser K, Hooker SB, Amon RMW, Babin M, Bélanger S, Walker SA, Benner R (2013) Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci Rep 3(1053). https://doi.org/10.1038/srep01053

  • Gonsior M, Peake BM, Cooper WT, Podgorski D, D’Andrilli J, Cooper WJ (2009) Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 43:698–703

    Article  CAS  Google Scholar 

  • Gonsior M, Zwartjes M, Cooper WJ, Song W, Ishida KP, TYseng LY, Jeung MK, Rosso D, Hertkorn N, Schmitt-Kopplin P (2011) Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry. Water Res 45:2943–2953

    Article  CAS  Google Scholar 

  • Hambly AC, Arvin E, Pedersen LF, Pedersen PB, Seredynska-Sobecka S, Stedmon CA (2015) Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy. Water Res 83:112–120

    Article  CAS  Google Scholar 

  • Hawkes JA, Hansen CT, Goldhammer T, Bach W, Dittmar T (2016) Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions. Geochim Cosmochim Acta 175:68–85

    Article  CAS  Google Scholar 

  • He W, Hur J (2015) Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter. Water Res 83:217–226

    Article  CAS  Google Scholar 

  • He W, Chen M, Park JE, Hur J (2016) Molecular diversity of riverine alkaline-extractable sediment organic matter and its linkages with spectral indicators and molecular size distributions. Water Res 100:222–231

    Article  CAS  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969

    Article  Google Scholar 

  • Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E (2009) Properties of fluorescent dissolved organic matter in the Gironde estuary. Org Geochem 40:706–719

    Article  CAS  Google Scholar 

  • Hur J, Cho J (2012) Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices. Sensors 12:972–986

    Article  CAS  Google Scholar 

  • Hur J, Williams MA, Schlautman MA (2006) Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis. Chemosphere 63:387–402

    Article  CAS  Google Scholar 

  • Hur J, Lee DH, Shin HS (2009) Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments. Org Geochem 40:1091–1099

    Article  CAS  Google Scholar 

  • Hur J, Lee BM, Shin KH (2014) Spectroscopic characterization of dissolved organic matter isolates from sediments and the association with phenanthrene binding affinity. Chemosphere 111:450–457

    Article  CAS  Google Scholar 

  • Inamdar S, Singh S, Dutta S, Levia D, Mitchell M, Scott D, Bais H, McHale P (2011) Fluorescence characteristics and sources of dissolved organic matter for stream water during storm events in a forested mid-Atlantic watershed. J Geophys Res 116:G03043. https://doi.org/10.1029/2011JG001735

    Article  Google Scholar 

  • Kim S, Kramer RW, Hatcher GH (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the Van Krevelen diagram. Anal Chem 72:5336–5344

    Article  Google Scholar 

  • Koch BP, Dittmar T (2006) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun Mass Spectrom 20:926–932

    Article  CAS  Google Scholar 

  • Koch BP, Dittmar T, Witt M, Kattner G (2007) Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Anal Chem 79:1758–1763

    Article  CAS  Google Scholar 

  • Koch BP, Ludwichowski K-U, Kattner G, Dittmar T, Witt M (2008) Advanced characterization of marine dissolved organic matter by combining reversed-phase liquid chromatography and FT-ICR-MS. Mar Chem 111:233–241

    Article  CAS  Google Scholar 

  • Kothawala DN, Wachenfeldt E, Koehler B, Tranvik LJ (2012) Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Sci Total Environ 433:238–246

    Article  CAS  Google Scholar 

  • Kowalczuk P, Durako MJ, Young H, Kahn AE, Cooper WJ, Gonsior M (2009) Characterization of dissolved organic matter fluorescence in the South Atlantic bight with use of PARAFAC model: interannual variability. Mar Chem 113:182–196

    Article  CAS  Google Scholar 

  • Kuwatsuka S, Watanabe A, Itoh K, Arai S (1992) Comparison of two methods of preparation of humic and fulvic acids, IHSS method and NAGOYA method. Soil Sci Plant Nutr 38:23–30

    Article  CAS  Google Scholar 

  • Lambert T, Bouillon S, Darchambeau F, Massicotte P, Borges AV (2016) Shift in the chemical composition of dissolved organic matter in the Congo River network. Biogeosciences 13:5405–5420

    Article  Google Scholar 

  • Lee Y, Hur J, Shin K-H (2014a) Characterization and source identification of organic matter in view of land uses and heavy rainfall in the Lake Sihwa, Korea. Mar Pollut Bull 84:322–329

    Article  CAS  Google Scholar 

  • Lee C-H, Lee B-Y, Chang WK, Hong S, Song SJ, Park J, Kwon B-O, Khim JS (2014b) Environmental and ecological effects of Lake Sihwa reclamation project in South Korea: a review. Ocean Coast Manag 102:545–558

    Article  Google Scholar 

  • Li D, Kim M, J-R O, Park J (2004) Distribution characteristics of nonyphenols in the artificial Lake Sihwa, and surrounding creeks in Korea. Chemosphere 56:783–790

    Article  CAS  Google Scholar 

  • Lv J, Zhang S, Luo L, Cao D (2016) Solid-phase extraction-stepwise elution (SPE-SE) procedure for isolation of dissolved organic matter prior to ESI-FT-ICR-MS analysis. Anal Chim Acta 948:55–61

    Article  CAS  Google Scholar 

  • Marshall AG, Hendrickson CL (2002) Fourier transform ion cyclotron resonance detection: principles and experimental configurations. Int J Mass Spectrom 215:59–75

    Article  CAS  Google Scholar 

  • McKee GA, Hatcher PG (2015) A new approach for molecular characterization of sediments with Fourier transform ion cyclotron resonance mass spectrometry: extraction optimization. Org Geochem 85:22–31

    Article  CAS  Google Scholar 

  • Meng F, Huang G, Yang X, Li Z, Li J, Cao J, Wang Z, Sun L (2013) Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers. Water Res 47:5027–5039

    Article  CAS  Google Scholar 

  • Minor AC, Steinbring CJ, Longnecker K, Kujawinski EB (2012) Characterization of dissolved organic matter in Lake Superior and its watershed using ultrahigh resolution mass spectrometry. Org Geochem 43:1–11

    Article  CAS  Google Scholar 

  • Mopper K, Stubbins A, Ritchie JD, Bialk HM, Hatcher PG (2007) Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chem Rev 107:419–442

    Article  CAS  Google Scholar 

  • Murphy KR, Stedmon CA, Waite TD, Ruiz GM (2008) Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar Chem 108:40–58

    Article  CAS  Google Scholar 

  • Murphy KR, Butler KD, Spencer RGM, Stedmon CA, Boehme JR, Aiken GR (2010) Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ Sci Technol 44:9405–9412

    Article  CAS  Google Scholar 

  • Murphy KR, Stedmon CA, Wenig P, Bro R (2014) OpenFluor—an online spectral library of auto-fluorescence by organic compounds in the environment. Anal Methods 6:658–661

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Package ‘vegan’: Community Ecology Package. https://cran.r-project.org/web/packages/vegan/vegan.pdf

  • Osburn CL, Boyd TJ, Montgomery MT, Bianchi TS, Coffin RB, Paerl HW (2016) Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Front Mar Sci 2:127

    Article  Google Scholar 

  • Osterholz H, Niggemann J, Giebel H-A, Simon M, Dittmar T (2015) Inefficient microbial production of refractory dissolved organic matter in the ocean. Nat Commun 6:7422

    Article  CAS  Google Scholar 

  • Phong DD, Lee Y, Shin K-H, Hur J (2014) Spatial variability in chromophoric dissolved organic matter for an artificial coastal lake (Sihwa) and the upstream catchments at two different seasons. Environ Sci Pollut Res 21:7678–7688

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature. https://doi.org/10.1038/nature10386

  • Sleighter RL, Hatcher PG (2007) The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. J Mass Spectrom 42:559–574

    Article  CAS  Google Scholar 

  • Sleighter RL, Hatcher PG (2011) Fourier transform mass spectrometry for the molecular level characterization of natural organic matter: instrument capabilities, applications, and limitations. Fourier Transforms - Approach to Scientific Principles. https://doi.org/10.5772/15959

  • Song G, Mesfioui R, Dotson A, Westerhoff P, Hatcher P (2016) Comparison of hydrophobic and amphiphilic fractions of dissolved organic matter from a water reservoir by Fourier transform ion cyclotron resonance mass spectrometry. J Soils Sediments. https://doi.org/10.1007/s11368-016-1582-3

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6:572–579

    Article  CAS  Google Scholar 

  • Stedmon CA, Markager S (2005) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697

    Article  CAS  Google Scholar 

  • Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254

    Article  CAS  Google Scholar 

  • Torres IC, Inglett PW, Brenner M, Kenney WF, Reddy KR (2012) Stable isotope (d13C and d15N) values of sediment organic matter in subtropical lakes of different trophic status. J Paleolimnol 47:693–706

    Article  Google Scholar 

  • Wagner S, Riedel T, Niggemann J, Vahatalo AV, Dittmar T, Jaffé R (2015) Linking the molecular signature of heteroatomic dissolved organic matter to watershed characteristics in world rivers. Environ Sci Technol 49:13798–13806

    Article  CAS  Google Scholar 

  • Willoughby AS, Wozniak AS, Hatcher PG (2014) A molecular-level approach for characterizing water-insoluble components of ambient organic aerosol particulates using ultrahigh-resolution mass spectrometry. Atmos Chem Phys 14:10299–10314

    Article  Google Scholar 

  • Yamashita Y, Jaffe R, Maie N, Tanoue E (2008) Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEMPARAFAC). Limnol Oceanogr 53:1900–1908

    Article  CAS  Google Scholar 

  • Yang L, Hur J (2014) Critical evaluation of spectroscopic indices for organic matter source tracing via end member mixing analysis based on two contrasting sources. Water Res 59:80–89

    Article  CAS  Google Scholar 

  • Yang L, Hong H, Chen C-TA, Guo W, Huang T-H (2013) Chromophoric dissolved organic matter in the estuaries of populated and mountainous Taiwan. Mar Chem 157:12–23

    Article  CAS  Google Scholar 

  • Yang L, Arthur Chen C-T, Lui H-K, Zhuang W-E, Wang B-J (2016) Effects of microbial transformation on dissolved organic matter in the east Taiwan Strait and implications for carbon and nutrient cycling. Estuar Coast Shelf Sci 180:59–68

    Article  CAS  Google Scholar 

  • Yao X, Zhang Y, Zhu G, Qin B, Feng L, Cai Linlin C, Gao G (2011) Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere 82:145–155

    Article  CAS  Google Scholar 

  • Zhou Y, Shi K, Zhang Y, Jeppesen E, Liu X, Zhou Q, Wu H, Tang X, Zhu G (2016) Fluorescence peak integration ratio IC:IT as a new potential indicator tracing the compositional changes in chromophoric dissolved organic matter. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.08.196

  • Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F (1998) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant (No. 2017R1A4A1015393) from the Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hur.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 2121 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derrien, M., Lee, Y.K., Shin, KH. et al. Comparing discrimination capabilities of fluorescence spectroscopy versus FT-ICR-MS for sources and hydrophobicity of sediment organic matter. Environ Sci Pollut Res 25, 1892–1902 (2018). https://doi.org/10.1007/s11356-017-0531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0531-z

Keywords

Navigation