Skip to main content
Log in

Toxicity profile of organic extracts from Magdalena River sediments

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Magdalena River, the main river of Colombia, receives contaminated effluents from different anthropogenic activities along its path. However, the Magdalena River is used as drinking water source for approximately 30 million inhabitants, as well as a major source of fish for human consumption. Only a few studies have been conducted to evaluate the environmental and toxicological quality of the Magdalena River. To evaluate sediment toxicity, wild-type and GFP transgenic Caenorhabditis elegans were exposed to methanolic extracts, and effects on lethality, locomotion, growth, and gene expression were determined based on fluorescence spectroscopy. These biological and biochemical parameters were correlated with measured pollutant concentrations (PAHs and trace elements), identifying patterns of toxicity along the course of the river. Effects on lethality, growth, and locomotion were observed in areas influenced by industrial, gold mining, and petrochemical activities. Changes in gene expression were evident for cyp-34A9, especially in the sampling site located near an oil refinery, and at the seaport, in Barranquilla City. Body bend movements were moderately correlated with Cr and As concentrations. The expression of mtl-1, mtl-2, hsp-6, and hsp-70 were significantly associated with Pb/U, Pb, Sr, and As/Sr/Pb/U, respectively. Interestingly, toxicity of methanolic as well as aqueous extracts were more prone to be dependent on Cd, Zn, and Th. In general, ecological risk assessment showed sediments display low environmental impact in terms of evaluated metals and PAHs. Different types of waste disposal on the Magdalena River, as a result of mining, domestic, agricultural, and industrial activities, incorporate toxic pollutants in sediments, which are capable of generating a toxic response in C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anbalagan C, Lafayette I, Antoniou-Kourounioti M, Gutierrez C, Martin JR, Chowdhuri DK, De Pomerai DI (2012) Transgenic nematodes as biosensors for metal stress in soil pore water samples. Ecotoxicology 21:439–455. https://doi.org/10.1007/s10646-011-0804-0

    Article  CAS  Google Scholar 

  • Anbalagan C, Lafayette I, Antoniou-Kourounioti M, Gutierrez C, Martin JR, Chowdhuri DK, De Pomerai DI (2013) Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils. Ecotoxicology 22:72–85. https://doi.org/10.1007/s10646-012-1004-2

    Article  CAS  Google Scholar 

  • Alyazichi Y, Jones B, McLean E (2015) Spatial distribution of sediment particles and trace element pollution within Gunnamatta Bay, Port Hacking, NSW, Australia. Reg Stud Mar Sci 2:124–131

    Article  Google Scholar 

  • Barón E, Gago-Ferrero P, Gorga M, Rudolph I, Mendoza G, Zapata A, Díaz-Cruz S, Barra R, Ocampo-Duque W, Páez M, Darbra R, Eljarrat E, Barceló D (2013) Occurrence of hydrophobic organic pollutants (BFRs and UV-filters) in sediments from South America. Chemosphere 92:309–316. https://doi.org/10.1016/j.chemosphere.2013.03.032

    Article  Google Scholar 

  • De Castro-Catala N, Kuzmanovic M, Roig N, Sierra J, Ginebreda A, Barceló D, Pérez S, Petrovic M, Picó Y, Schuhmacher M, Muñoz I (2016) Ecotoxicity of sediments in rivers: invertebrate community, toxicity bioassays and the toxic unit approach as complementary assessment tools. Sci Tot Environ 540:297–306. https://doi.org/10.1016/j.scitotenv.2015.06.071

    Article  Google Scholar 

  • De Pomerai D, Anbalagan C, Lafayette I, Rajagopalan D, Loose M, Haque M, King J (2010) High-throughput analysis of multiple stress pathways using GFP reporters in C. elegans. Environ Toxicol III 132:177–187

    Google Scholar 

  • Duodu GO, Goonetilleke A, Ayoko GA (2016) Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ Pollut 219:1077–1091. https://doi.org/10.1016/j.envpol.2016.09.008

    Article  CAS  Google Scholar 

  • El Azhari A, Rhoujjati A, El Hachimi ML (2016) Assessment of heavy metals and arsenic contamination in the sediments of the Moulouya River and the Hassan II Dam downstream of the abandoned mine Zeïda (High Moulouya, Morocco). J Afr Earth Sci 119, 279:–288. https://doi.org/10.1016/j.jafrearsci.2016.04.011

  • Hakanson L (1980) Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Harada H, Kurauchi M, Hayashi R, Eki T (2007) Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents. Ecotoxicol Environ Saf 66(3):378–383

    Article  CAS  Google Scholar 

  • Harmon S, Wyatt D (2008) Evaluation of post-Katrina flooded soils for contaminants and toxicity to the soil invertebrates Eisenia fetida and Caenorhabditis elegans. Chemosphere 70(10):1857–1864

    Article  CAS  Google Scholar 

  • Harris DC (2007) Quantitative Chemical Analysis, 7th ed. W.H. Freeman, New York

    Google Scholar 

  • Höss S, Haitzer M, Traunspurger W, Steinberg C (2009) Growth and fertility of C. elegans (nematoda) in unpolluted freshwater sediments: response to particle size distribution and organic content. Environ Toxicol Chem 18(12):2921–2925

    Article  Google Scholar 

  • Höss S, Ahlf W, Fahnenstich C, Gilberg D, Hollert H, Melbye K, Meller M, Hammers-Wirtz M, Heininger P, Neumann-Hensel H, Ottermanns R, Ratte HT, Seiler TB, Spira D, Weber J, Feiler U (2010) Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination—determination of toxicity thresholds. Environ Pollut 158(9):2999–3010. https://doi.org/10.1016/j.envpol.2010.05.013

    Article  Google Scholar 

  • Hsu LC, Huang CY, Chuang YH, Chen HW, Chan YT, Teah HY, Chen TY, Chang CF, Liu YT, Tzou YM (2016) Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries. Sci Rep 6:34250. https://doi.org/10.1038/srep34250

    Article  CAS  Google Scholar 

  • Huguier P, Manier N, Méline C, Bauda P, Pandard P (2013) Improvement of the Caenorhabditis elegans growth and reproduction test to assess the ecotoxicity of soils and complex matrices. Environ Toxicol Chem 32(9):2100–2108. https://doi.org/10.1002/etc.2282

    Article  CAS  Google Scholar 

  • International Organization for Standardization (2005) ISO 10390:2005. Determination of pH.

  • Jabłońska-Czapla M, Nocoń K, Szopa S, Łyko A (2016) Impact of the Pb and Zn ore mining industry on the pollution of the Biała Przemsza River, Poland. Environ Monit Assess 188(5):262. https://doi.org/10.1007/s10661-016-5233-3

  • Ju J, Lieke T, Saul N, Pu Y, Yin L, Kochan C, Putschew A, Baberschke N, Steinberg C (2014) Neurotoxic evaluation of two organobromine model compounds and natural AOBr-containing surface water samples by a Caenorhabditis elegans test. Ecotoxicol Environ Safe 104:194–201. https://doi.org/10.1016/j.ecoenv.2014.03.009

    Article  CAS  Google Scholar 

  • Kadhum S, Ishak M, Zulkifli S, Hashim R (2015) Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. Mar Pollut Bull 101(1):391–396. https://doi.org/10.1016/j.marpolbul.2015.10.012

    Article  CAS  Google Scholar 

  • Koukina SE, Lobus NV, Peresypkin VI, Dara OM, Smurov AV (2016) Abundance, distribution and bioavailability of major and trace elements in surface sediments from the Cai River estuary and Nha Trang Bay (South China Sea, Vietnam). Estuarine, Coastal and Shelf Science, In Press. https://doi.org/10.1016/j.ecss.2016.03.005

  • Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106(1):5–28. https://doi.org/10.1093/toxsci/kfn121

    Article  CAS  Google Scholar 

  • Lide D (2008) CRC handbook of chemistry and physics, geophysics, astronomy, and acoustics. Section 14, Abundance of elements in the Earth’s crust and in the sea 89th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Liu S, Ren H, Shen L, Lou L, Tian G, Zheng P, Hu B (2015) pH levels drive bacterial community structure in sediments of the Qiantang River as determined by 454 pyrosequencing. Front Microbiol 6:285. https://doi.org/10.3389/fmicb.2015.00285

    Google Scholar 

  • Lora R, Bonilla H (2010) Remediation of a soil contaminated with the heavy metals cadmium and cromium on the high basin of the Bogota river. Revista UDCA Actualidad and Divulgación Científica 13(2):61–70 (In Spanish)

    Google Scholar 

  • Loughery J, Arciszewski T, Kidd K, Mercer A, Hewitt L, Maclatchy D, Munkittrick K (2014) Understanding the chronic impacts of oil refinery wastewater requires consideration of sediment contributions to toxicity. Arch Environ Contam Toxicol 66(1):19–31. https://doi.org/10.1007/s00244-013-9954-9

    Article  CAS  Google Scholar 

  • Louiz I, Kinani S, Gouze M, Ben-Attia M, Menif D, Bouchonnet S, Porcher J, Ben-Hassine O, Aït-Aïssa S (2008) Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs). Sci Tot Environ 402(2–3):318–329. https://doi.org/10.1016/j.scitotenv.2008.05.005

    Article  CAS  Google Scholar 

  • Mac Donald D, Ingersoll C, Berger T (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Malvandi H (2017) Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran. Mar Pollut Bull 117(1–2):547–553. https://doi.org/10.1016/j.marpolbul.2017.02.035

    Article  CAS  Google Scholar 

  • Mancera N, Alvarez R (2006) Estado del conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulceacuicolas de Colombia. Acta Biologica Colombiana 11:3–23 (In Spanish)

    Google Scholar 

  • Mataba GR, Verhaert V, Blust R, Bervoets L (2016) Distribution of trace elements in the aquatic ecosystem of the Thigithe river and the fish Labeo victorianus in Tanzania and possible risks for human consumption. Sci Tot Environ 547:48–59. https://doi.org/10.1016/j.scitotenv.2015.12.123

    Article  CAS  Google Scholar 

  • Medeiros-Filho L, Lafon JM, Souza-Filho PW (2016) PbeSreNd isotopic tracing of the influence of the Amazon River on the bottom sediments in the lower Tapajós River. J S Am Earth Sci 70:36–48. https://doi.org/10.1016/j.jsames.2016.04.012

    Article  CAS  Google Scholar 

  • Menzel R, Höss S, Claus S, Menzel S, Steinberg S, Reifferscheid G, Stürzenbaum S (2009) Gene expression profiling to characterize sediment toxicity—a pilot study using C. elegans whole genome microarrays. BMC Genomics 10(160):1–15. https://doi.org/10.1186/1471-2164-10-160

    Google Scholar 

  • Nikolaou A, Kostopoulou M, Petsas M, Vagi M, Lofrano G, Meric S (2009) Levels and toxicity of polycyclic aromatic hydrocarbons in marine sediments. Trends Anal Chem 28(6):653–664

    Article  CAS  Google Scholar 

  • Obiri S, Yeboah PO, Osae S, Adu-Kumi S, Cobbina SJ, Armah FA, Ason B, Antwi E, Quansah R (2016) Human health risk assessment of artisanal miners exposed to toxic chemicals in water and sediments in the Prestea Huni Valley District of Ghana. Int J Environ Res Public Health 13:139. https://doi.org/10.3390/ijerph13010139

    Article  Google Scholar 

  • Okay O, Donkin P, Peters L, Livingstone D (2000) The role of algae (Isochrysis galbana) enrichment on the bioaccumulation of benzo[a]pyrene and its effects on the blue mussel Mytilus edulis. Environ Pollut 110(1):103–113

    Article  CAS  Google Scholar 

  • Olivero-Verbel J, Caballero-Gallardo K, Turizo-Tapia A (2015) Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia). Environ Sci Pollut Res Int 22(8):5895–5907. https://doi.org/10.1007/s11356-014-3724-8

    Article  CAS  Google Scholar 

  • Paramasivam K, Ramasamy V, Suresh G (2015) Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigai river, Tamilnadu, India. Spectrochim Acta A Mol Biomol Spectrosc 137:397–407. https://doi.org/10.1016/j.saa.2014.08.056

    Article  CAS  Google Scholar 

  • Pointet K, Milliet A (2000) PAHs analysis of fish whole gall bladders and livers from the Natural Reserve of Camargue by GC/MS. Chemosphere 40:293–299

    Article  CAS  Google Scholar 

  • Power RS, De Pomerai DI (1999) Effect of single and paired metal inputs in soil on a stress-inducible transgenic nematode. Arch Environ Contam Toxicol 37:503–511

    Article  CAS  Google Scholar 

  • Remaili T, Simpson S, Amato E, Spadaro D, Jarolimek C, Jolley D (2016) The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: implications for sediment quality assessment. Environ Pollut 208(Part B):590–599. https://doi.org/10.1016/j.envpol.2015.10.033

    Article  CAS  Google Scholar 

  • Restrepo J (2008) Applicability of LOICZ catchment–coast continuum in a major Caribbean basin: the Magdalena River, Colombia. Estuar Coast Shelf Sci 77(2):214–229

    Article  Google Scholar 

  • Richir J, Gobert S (2014) A reassessment of the use of Posidonia oceanica and Mytilus galloprovincialis to biomonitor the coastal pollution of trace elements: new tools and tips. Mar Pollut Bull 89(1–2):390–406. https://doi.org/10.1016/j.marpolbul.2014.08.030

    Article  CAS  Google Scholar 

  • Rodríguez A, González J, Suárez R (2009) Accumulation of lead, chromium, and cadmium in muscle of capitan (Eremophilus mutisii), a catfish from the Bogota River basin. Arch Environ Contam Toxicol 57(2):359–365. https://doi.org/10.1007/s00244-008-9279-2

    Article  Google Scholar 

  • Roh J, Park Y, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode C. elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29(2):167–172. https://doi.org/10.1016/j.etap.2009.12.003

    Article  CAS  Google Scholar 

  • Roh J, Choi J (2011) Cyp35a2 gene expression is involved in toxicity of fenitrothion in the soil nematode Caenorhabditis elegans. Chemosphere 84(10):1356–1361. https://doi.org/10.1016/j.chemosphere.2011.05.010

    Article  CAS  Google Scholar 

  • Sanz M, Siebel M, Ahlers R, Gupta J (2016) New approaches to cleaner production: applying the SASI method to micro-tanneries in Colombia. J Clean Prod 112(Part 1):963–971

    Article  Google Scholar 

  • Sarria-Villa R, Ocampo-Duque W, Páez M, Schuhmacher M (2016) Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment. Sci Tot Environ 540:455–465. https://doi.org/10.1016/j.scitotenv.2015.07.020

    Article  CAS  Google Scholar 

  • Shen L, Xiao J, Ye H, Wang D (2009) Toxicity evaluation in nematode Caenorhabditis elegans after chronic metal exposure. Environ Toxicol Pharmacol 28(1):125–132. https://doi.org/10.1016/j.etap.2009.03.009

    Article  CAS  Google Scholar 

  • Sierra C, Ruíz-Barzola O, Menéndez M, Demey JR, Vicente-Villardón JL (2017) Geochemical interactions study in surface river sediments at an artisanal mining area by means of Canonical (MANOVA)-Biplot. J Geochem Explor 175:72–81. https://doi.org/10.1016/j.gexplo.2017.01.002

    Article  CAS  Google Scholar 

  • Silva MVH, Cabral-Pinto MMS, Carvalho PCS (2016) Major, trace and REE geochemistry of recent sediments from lower Catumbela River (Angola). J Afr Earth Sci 115:203–217. https://doi.org/10.1016/j.jafrearsci.2015.12.014

    Article  CAS  Google Scholar 

  • Singare P (2015) Studies on polycyclic aromatic hydrocarbons in surface sediments of Mithi River near Mumbai, India: assessment of sources, toxicity risk and biological impact. Mar Pollut Bull 101(1):232–242. https://doi.org/10.1016/j.marpolbul.2015.09.057

    Article  CAS  Google Scholar 

  • Srivastava S, Pant A, Trivedi S, Pandey R (2016) Curcumin and β-caryophellene attenuate cadmium quantum dots induced oxidative stress and lethality in Caenorhabditis elegans model system. Environ Toxicol Pharmacol 42:55–62. https://doi.org/10.1016/j.etap.2016.01.001

    Article  CAS  Google Scholar 

  • Suman S, Sinha A, Tarafdar A (2016) Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Sci Tot Environ 545–546:353–360. https://doi.org/10.1016/j.scitotenv.2015.12.061

    Article  Google Scholar 

  • Sun L, Lin Z, Liao K, Xi Z, Wang D (2015) Adverse effects of coal combustion related fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. Sci Tot Environ 512–513:251–260

    Article  Google Scholar 

  • Sun L, Wu Q, Liao K, Yu P, Cui Q, Rui Q, Wang D (2016) Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background. Chemosphere 144:2392–2400. https://doi.org/10.1016/j.chemosphere.2015.11.028

    Article  CAS  Google Scholar 

  • Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) Influence of mineralogical and heavy metal composition on natural radionuclide contents in the river sediments. Appl Radiat Isot 69:1466–1474. https://doi.org/10.1016/j.apradiso.2011.05.020

    Article  CAS  Google Scholar 

  • Taylor M, Klaine S, Carvalho F, Barcelo D, Everaarts J (2003) Pesticide residues in coastal tropical ecosystems: distribution, fate and effects. CRC Press, London

    Google Scholar 

  • Tejeda-Benitez L, Flegal R, Odigie K, Olivero-Verbel J (2016) Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. Environ Pollut 212:238–250. https://doi.org/10.1016/j.envpol.2016.01.057

    Article  CAS  Google Scholar 

  • Tejeda-Benitez L, Olivero-Verbel J (2016) Caenorhabditis elegans, a biological model for research in toxicology. Rev Environ Contam Toxicol 237:1–35. https://doi.org/10.1007/978-3-319-23573-8_1

    CAS  Google Scholar 

  • Tiess G (2010) Minerals policy in Europe: some recent developments. Resour Policy 35(3):190–198

    Article  Google Scholar 

  • Tuikka AI, Schmitt C, Höss S, Bandow N, Von der Ohe PC, de Zwart D, De Deckere E, Streck G, Mothes S, Van Hattum B, Kocan A, Brix R, Brack W, Barceló D, Sormunen AJ, Kukkonen J (2011) Toxicity assessment of sediments from three European river basins using a sediment contact test battery. Ecotoxicol Environ Saf 74(1):123–131. https://doi.org/10.1016/j.ecoenv.2010.08.038

    Article  CAS  Google Scholar 

  • Turner EA, Kroeger GL, Arnold MC, Thornton BL, Di Giulio RT, Meyer JN (2013) Assessing different mechanisms of toxicity in mountaintop removal/valley fill coal mining-affected watershed samples using Caenorhabditis elegans. PLoS One 8(9):e75329. https://doi.org/10.1371/journal.pone.0075329

    Article  CAS  Google Scholar 

  • USEPA (1996) METHOD 3050B. Acid digestion of sediments, sludges, and soils. USA.

  • Vale M, Silva M, Damin I, Sanches-Filho P, Welz B (2008) Determination of volatile and non-volatile nickel and vanadium compounds in crude oil using electrothermal atomic absorption spectrometry after oil fractionation into saturates, aromatics, resins and asphaltenes. Talanta 74:1385–1391. https://doi.org/10.1016/j.talanta.2007.09.009

    Article  CAS  Google Scholar 

  • Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051

    Article  CAS  Google Scholar 

  • Venturini N, Muniz P, Bícego M, Martins C, Tommasi L (2008) Petroleum contamination impact on macrobenthic communities under the influence of an oil refinery: integrating chemical and biological multivariate data. Estuar Coast Shelf Sci 78(3):457–467

    Article  CAS  Google Scholar 

  • Villadiego K, Velay-Dabat M (2014) Outdoor thermal comfort in a hot and humid climate of Colombia: a field study in Barranquilla. Build Environ 75:142–152

    Article  Google Scholar 

  • Wah Chu K, Chow KL (2002) Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat Toxicol 61(1–2):53–64

    Article  CAS  Google Scholar 

  • Wang D, Xing X (2008) Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J Environ Sci (China) 20(9):1132–1137

    Article  CAS  Google Scholar 

  • Wang X, Shen L, Yu H, Wang D (2008) Toxicity evaluation in a paper recycling mill effluent by coupling bioindicator of aging with the toxicity identification evaluation method in nematode Caenorhabditis elegans. J Environ Sci 20(11):1373–1380

    Article  CAS  Google Scholar 

  • Wang D, Liu P, Xing X (2010a) Pre-treatment with mild UV irradiation increases the resistance of nematode Caenorhabditis elegans to toxicity on locomotion behaviors from metal exposure. Environ Toxicol Pharmacol (3):213–222. https://doi.org/10.1016/j.etap.2010.01.002

  • Wang D, Wang Y, Shen L (2010b) Confirmation of combinational effects of calcium with other metals in a paper recycling mill effluent on nematode lifespan with toxicity identification evaluation method. J Environ Sci 22(5):731–737

    Article  Google Scholar 

  • Williams P, Dusenbery D (1990) Aquatic toxicity testing using the nematode, Caenorhabditis elegans. Environ Toxicol Chem 9(10):285–1290

    Article  Google Scholar 

  • Wolfram G, Höss S, Orendt C, Schmitt C, Adámek Z, Bandow N, Grosschartner M, Kukkonen J, Leloup V, López-Doval J, Muñoz I, Traunspurger W, Tuikka A, Van Liefferinge C, von der Ohe PC, de Deckere E (2012) Assessing the impact of chemical pollution on benthic invertebrates from three different European rivers using a weight-of-evidence approach. Sci Tot Environ 438:498–509. https://doi.org/10.1016/j.scitotenv.2012.07.065

    Article  CAS  Google Scholar 

  • Wu Q, Qu Y, Li X, Wang D (2012) Chromium exhibits adverse effects at environmental relevant concentrations in chronic toxicity assay system of nematode Caenorhabditis elegans. Chemosphere 87(11):1281–1287. https://doi.org/10.1016/j.chemosphere.2012.01.035

    Article  CAS  Google Scholar 

  • Wu W, Xu S, Lu H, Yang J, Yin H, Liu W (2011) Mineralogy, major and trace element geochemistry of riverbed sediments in the headwaters of the Yangtze, Tongtian River and Jinsha River. J Asian Earth Sci 40:611-621. https://doi.org/10.1016/j.jseaes.2010.10.013

  • Young SM, Pitawala A, Ishiga H (2013) Geochemical characteristics of stream sediments, sediment fractions, soils, and basement rocks from the Mahaweli River and its catchment, Sri Lanka. Chemie der Erde - Geochemistry 73(3):357–371. https://doi.org/10.1016/j.chemer.2012.09.003

    Article  CAS  Google Scholar 

  • Zhang Z, Wang J, Tang C, De Laune R (2015) Heavy metals and metalloids content and enrichment in Gulf Coast sediments in the vicinity of an oil refinery. J Geochem Explor 159:93–100

    Article  Google Scholar 

  • Zhang D, Liu J, Jiang X, Cao K, Yin P, Zhang X (2016) Distribution, sources and ecological risk assessment of PAHs in surface sediments from the Luan River Estuary, China. Mar Pollut Bull 102(1):223–229. https://doi.org/10.1016/j.marpolbul.2015.10.043

    Article  CAS  Google Scholar 

  • Zhao Y, Lin Z, Jia R, Li G, Xi Z, Wang D (2014) Transgenerational effects of traffic-related fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. J Hazard Mater 274:106–114. https://doi.org/10.1016/j.jhazmat.2014.03.064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. David De Pomerai in the University of Nottingham (UK) for his support to this research and supplying the transgenic strains of C. elegans; to Dr. Joel Meyer in Duke University (USA) for supplying the N2 strain; to the program Fulbright-Colciencias for the financial support of Katia Noguera-Oviedo; and to the University of Cartagena (Colombia), Program to Support to Research Groups (2014–2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Olivero-Verbel.

Additional information

Responsible editor: Cinta Porte

Electronic supplementary material

ESM 1

(DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tejeda-Benítez, L., Noguera-Oviedo, K., Aga, D.S. et al. Toxicity profile of organic extracts from Magdalena River sediments. Environ Sci Pollut Res 25, 1519–1532 (2018). https://doi.org/10.1007/s11356-017-0364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0364-9

Keywords

Navigation