Skip to main content
Log in

Low-dose combined exposure of nanoparticles and heavy metal compared with PM2.5 in human myocardial AC16 cells

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The co-exposure toxicity mechanism of ultrafine particles and pollutants on human cardiovascular system are still unclear. In this study, the combined effects of silica nanoparticles (SiNPs) and/or carbon black nanoparticles (CBNPs) with Pb(AC)2 compared with particulate matter (PM)2.5 were investigated in human myocardial cells (AC16). Our study detected three different combinations of SiNPs and Pb(AC)2, CBNPs and Pb(AC)2, and SiNPs and CBNPs compared with PM2.5 at low-dose exposure. Using PM2.5 as positive control, our results suggested that the combination of SiNPs and Pb(AC)2/CBNPs could increase the production of reactive oxygen species (ROS), lactate dehydrogenase leakage (LDH), and malondialdehyde (MDA) and decrease the activities of superoxide dismutase (SOD) and glutathione (GSH); induce inflammation by the upregulation of protein CRP and TNF-α, and apoptosis by the upregulation of protein caspase-3, caspase-9, and Bax while the downregulation of protein Bcl-2; and trigger G2/M phase arrest by the upregulation of protein Chk2 and downregulation of protein Cdc2 and cyclin B1. In addition, the combination of CBNPs and Pb(AC)2 induced a significant increase in MDA and reduced the activities of ROS, LDH, SOD, and GSH, with G1/S phase arrest via upregulation of Chk1 and downregulation of CDK6 and cyclin D1. Our data suggested that the additive interaction and synergistic interaction are the major interaction in co-exposure system, and PM2.5 could trigger more severe oxidative stress, G2/M arrest, and apoptosis than either co-exposure or single exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bell ML, Dominici F, Ebisu K et al (2007) Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ. Health Perspect 115:989–995

    Article  CAS  Google Scholar 

  • Boisa N, Elom N, Dean JR et al (2014) Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil. Environ Int 70:132–142

    Article  CAS  Google Scholar 

  • Bourdon JA, Saber AT, Jacobsen NR et al (2013) Carbon black nanoparticle intratracheal instillation does not alter cardiac gene expression. Cardiovasc Toxicol 13:406–412

    Article  CAS  Google Scholar 

  • Breitner S, Liu L, Cyrys J et al (2011) Sub-micrometer particulate air pollution and cardiovascular mortality in Beijing, China. Sci. Total Environ 409:5196–5204

    Article  CAS  Google Scholar 

  • Chen Y, Poon RY (2008) The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front Biosci 13:5016–5029

    CAS  Google Scholar 

  • Duan J, Yu Y, Li Y et al (2013a) Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials 34:5853–5862

    Article  CAS  Google Scholar 

  • Duan J, Yu Y, Li Y et al (2013b) Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PLoS One 8:e62087

    Article  CAS  Google Scholar 

  • Duan J, Yu Y, Li Y et al (2016a) Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[a] pyrene in zebrafish (Danio rerio) embryos. Chemosphere 151:152–162

    Article  CAS  Google Scholar 

  • Duan J, Hu H, Li Q et al (2016b) Combined toxicity of silica nanoparticles and methylmercury on cardiovascular system in zebrafish (Danio rerio) embryos. Environ Toxicity Pharmacol 44:120–127

    Article  CAS  Google Scholar 

  • Duan J, Hu H, Li Q et al (2016c) Combined toxicity of silica nanoparticles and methylmercury on cardiovascular system in zebrafish (Danio rerio) embryos. Environ Toxicol Pharmacol 44:120–127

    Article  CAS  Google Scholar 

  • Forastiere F, Holgate ST, Kreyling WG, et al. (2009) Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways. Part Fibre Toxicol 6, 19

  • Franck U, Odeh S, Wiedensohler A et al (2011) The effect of particle size on cardiovascular disorder—the smaller the worse. Sci. Total Environ 409:4217–4221

    Article  CAS  Google Scholar 

  • Fruijtier-Polloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica—a nanostructured material. Toxicity 294:61–79

    Article  Google Scholar 

  • Grahame TJ, Schlesinger RB (2010) Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence. Air Qual Atmos Health 3:3–27

    Article  CAS  Google Scholar 

  • Guo M, Xu X, Wang S et al (2013) In vivo biodistribution and synergistic toxicity of silica nanoparticles and cadmium chloride in mice. J Hazard Mater 260:780–788

    Article  CAS  Google Scholar 

  • HEI (2010) Traffic related air pollution: a critical review of the literature on emissions, exposure and health effects. HEI Special Report 17. Boston: Health Effects Institute

  • Hu H, Wu J, Li Q et al (2016) Fine particulate matter induces vascular endothelial activation via IL-6 dependent JAK1/STAT3 signaling pathway. Toxicol Res 5:946–953

    Article  CAS  Google Scholar 

  • Johnson NF, Jaramillo RJ (1997) cells with natural and man-made vitreous fibers. Environ Health Perspect 105:1143–1145

    Article  Google Scholar 

  • Kamata H, Tasaka S, Inoue K et al (2011) Carbon black nanoparticles enhance bleomycin-induced lung inflammatory and fibrotic changes in mice. Exp Biol Med (Maywood) 236:315–324

    Article  CAS  Google Scholar 

  • Knol AB, de Hartog JJ, Boogaard H, et al. (2009) Expert elicitation on ultrafine particles: likehood of health effects and causal pathways. Part Fibre Toxicol 6, 19

  • Liang H, Jin C, Tang Y et al (2014) Cytotoxicity of silica nanoparticles on HaCaT cells. J Appl Toxicol 34:367–372

    Article  CAS  Google Scholar 

  • Lu X, Qian J, Zhou H et al (2011) In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int J Nanomedicine 6:1889–1901

    CAS  Google Scholar 

  • Lu C, Yuan X, Li L et al (2015) Combined exposure to nano-silica and lead induced potentiation of oxidative stress and DNA damage in human lung epithelial cells. Excotoxicity Environ Safety 122:537–544

    Article  CAS  Google Scholar 

  • Lustberg M, Silbergeld E (2002) Blood lead levels and mortality. Arch Intern Med 162:2443–2449

    Article  CAS  Google Scholar 

  • Mai WX, Meng H (2013) Mesoporous silica nanoparticles: a multifunctional nano therapeutic system. Integr Biol (Camb) 5:19–28

    Article  CAS  Google Scholar 

  • Menke A, Muntner P, Batuman V et al (2006) Blood lead below 0.48 micromol/L (10 microg/dL) and mortality among US adults. Circulation 114:1388–1394

    Article  CAS  Google Scholar 

  • Miller MR, Shaw CA, Langrish JP (2012) From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Futur Cardiol 8:577–602

    Article  CAS  Google Scholar 

  • Møller P, Mikkelsen L, Vesterdal LK et al (2011) Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Critical Reviews Toxicity 41:339–368

    Article  Google Scholar 

  • Mroz RM, Schins RPF, Li H et al (2007) Nanoparticles carbon black driven DNA damage induces growth arrest and AP-1 and NF-κB DNA binding in lung epithelial A549 cell line. J Physiol Pharmacol 58:461–470

    Google Scholar 

  • Napierska D, Thomassen LC, Rabolli V et al (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853

    Article  CAS  Google Scholar 

  • Navas-Acien A, Selvin E, Sharrett AR et al (2004) Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation 109:3196–3201

    Article  CAS  Google Scholar 

  • Navas-Acien A, Guallar E, Silbergeld EK et al (2007) Lead exposure and cardiovascular disease—a systematic review. Environ Health Perspect 115:472–482

    Article  CAS  Google Scholar 

  • Nicole AH, Gerard H, Milena SL et al (2011) Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ Health Perspect 119:1691–1699

    Article  Google Scholar 

  • Niwa Y, Hiura Y, Murayama T et al (2007) Nano-sized carbon black exposure exacerbates atherosclerosis in LDL-receptor knockout mice. Circ J 71:1157–1161

    Article  CAS  Google Scholar 

  • Patel MM, Chillrud SN, Correa JC et al (2010) Traffic-related particulate matter and acute respiratory symptoms among New York city area adolescents. Environ. Health Perspect 117:957–963

    Google Scholar 

  • Schober SE, Mirel LB, Graubard BI et al (2006) Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environ Health Perspect 114:1538–1541

    CAS  Google Scholar 

  • Shah AS, Langrish JP, Nair H et al (2013) Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382:1039–1048

    Article  CAS  Google Scholar 

  • Shannahan JH, Kodavanti UP, Brown JM (2012) Manufactured and airborne nanoparticles cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 24:320–339

    Article  CAS  Google Scholar 

  • Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ. Health Perspect 113:947–955

    Article  Google Scholar 

  • Sosnovik DE, Nahrendorf M (2012) Cells and iron oxide nanoparticles on the move: magnetic resonance imaging of monocyte homing and myocardial inflammation in patients with ST-elevation myocardial infarction. Circ Cardiovasc Imaging 5(5):551–554

    Article  Google Scholar 

  • Sun Y, Zhuang G, Zhang W et al (2006) Characteristics and sources of lead pollution after phasing out leaded gasoline in Beijing. Atmos Environ 40:2973–2985

    Article  CAS  Google Scholar 

  • Sun L, Li Y, Liu X, Jin M, Zhang L et al (2011) Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol in Vitro 25:1619–1629

    Article  CAS  Google Scholar 

  • Traboulsi H, Guerrina N, Iu M, et al. (2017) Inhaled pollutants: the molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int J Mol Sci 18(2):243

  • U.S. EPA (U.S. Environmental Protection Agency). (2006) Air quality criteria for lead (final). Available: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=158823[accessed 27 November 2006]

  • van Berlo D, Hullmann M, Schins RP (2012) Toxicity of ambient particulate matter. EXS 101:165–217

  • Vesterdal LK, Mikkelsen L, Folkmann JK et al (2012) Carbon black nanoparticles and vascular dysfunction in cultured endothelial cells and artery segments. Toxicol Lett 214:19–26

    Article  CAS  Google Scholar 

  • Volk HE, Lurmann F, Penfold B et al (2013) Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry 70(1):71–77

    Article  Google Scholar 

  • Wang J, Engle S, Zhang Y (2011) A new in vitro system for activating the cell cycle checkpoint. Cell Cycle 10:500–506

    Article  Google Scholar 

  • Weichenthal S (2012) Selected physiological effects of ultrafine particles in acute cardiovascular morbidity. Environ Res 115:26–36

    Article  CAS  Google Scholar 

  • WHO. (2006) Air Quality Guideline. Global update 2005. Copenhagen: World Health Organization Regional Office for Europe

  • Wiseman CL, Zereini F (2014) Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos Environ 89:282–289

    Article  CAS  Google Scholar 

  • Wu J, Shi Y, Asweto CO et al (2016) Co-exposure to amorphous silica nanoparticles and benzo[a]pyrene at low level in human bronchial epithelial BEAS-2B cells. Environ Sci Pollut Res Int 23(22):23134–23144

    Article  CAS  Google Scholar 

  • Yang Y, Li J (2014) Lipid, protein and poly (NIPAM) coated mesoporous silica nanoparticles for biomedical applications. Adv Colloid Interf Sci 207:155–163

    Article  CAS  Google Scholar 

  • Yu Y, Duan J, Li Y et al (2015) Combined toxicity of amorphous silica nanoparticles and methylmercury to human lung epithelial cells. Ecotoxicol Environ Saf 112:144–152

    Article  CAS  Google Scholar 

  • Zhang YN, Hu HJ, Shi YF et al (2017) 1H NMR-based metabolomics study on repeat dose toxicity of fine particulate matter in rats after Intratracheal instillation. Sci Total Environ 589:212–221

    Article  CAS  Google Scholar 

  • Zhao XB, Guo X, Sun JZ et al (2012) Experimental study on toxic effects of particulate matters from different Chinese cities on human vascular endothelial cells. J Environ Health 29:3–6

    CAS  Google Scholar 

  • Zhu J, Liao L, Zhu L et al (2013) Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells. Talanta 107:408–415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 81230065, 81571130090) and Scientific Research Common Program of Beijing Municipal Commission of Education (KM201610025006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchao Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Yang, X., Asweto, C.O. et al. Low-dose combined exposure of nanoparticles and heavy metal compared with PM2.5 in human myocardial AC16 cells. Environ Sci Pollut Res 24, 27767–27777 (2017). https://doi.org/10.1007/s11356-017-0228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0228-3

Keywords

Navigation