Skip to main content
Log in

Composting plant leachate treatment by a pilot-scale, three-stage, horizontal flow constructed wetland in central Iran

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Handling and treatment of composting leachate is difficult and poses major burdens on composting facilities. The main goal of this study was to evaluate usage of a three-stage, constructed wetland to treat leachate produced in Isfahan composting facility. A pilot-scale, three-stage, subsurface, horizontal flow constructed wetland, planted with vetiver with a flow rate of 24 L/day and a 15-day hydraulic retention time, was used. Removal of organic matter, ammonia, nitrate, total nitrogen, suspended solids, and several heavy metals from Isfahan composting facility leachate was monitored over a 3-month period. Constructed wetland system was capable of efficiently removing BOD5 (87.3%), COD (74.5%), ammonia (91.5%), nitrate (87.9%), total nitrogen (87.8%), total suspended solids (85.5%), and heavy metals (ranging from 70 to 90%) from the composting leachate. High contaminant removal efficiencies were achieved, but effluent still failed to meet Iranian standards for treated wastewater. This study shows that although a three-stage horizontal flow constructed wetland planted with vetiver cannot be used alone to treat Isfahan composting facility leachate, but it has the potential to be used as a leachate pre-treatment step, along with another complementary method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • APHA A (2012) WEF (2012), Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

  • Ávila C, Matamoros V, Reyes-Contreras C, Piña B, Casado M, Mita L, Rivetti C, Barata C, García J, Bayona JM (2014) Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater. Sci Total Environ 470–471:1272–1280

    Article  Google Scholar 

  • Ayaz SÇ, Aktaş Ö, Akça L, Fındık N (2015) Effluent quality and reuse potential of domestic wastewater treated in a pilot-scale hybrid constructed wetland system. J Environ Manag 156:115–120

    Article  CAS  Google Scholar 

  • Babaei AA, Azadi R, Jaafarzadeh N, Alavi N (2013) Application and kinetic evaluation of upflow anaerobic biofilm reactor for nitrogen removal from wastewater by Anammox process. Iran J Environ Health Sci Eng 10:1

    Article  Google Scholar 

  • Bachand PA, Horne AJ (1999) Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol Eng 14:17–32

    Article  Google Scholar 

  • Bakhshoodeh R, Alavi N, Mohammadi AS, Ghanavati H (2017a) Erratum to: removing heavy metals from Isfahan composting leachate by horizontal subsurface flow constructed wetland. Environ Sci Pollut Res 24:4221–4221

  • Bakhshoodeh R, Alavi N, Majlesi M, Paydary P (2017b) Compost leachate treatment by a pilot-scale subsurface horizontal flow constructed wetland. Ecol Eng 105:7–14

    Article  Google Scholar 

  • Bang J, Kamala-Kannan S, Lee K-J, Cho M, Kim C-H, Kim Y-J, Bae J-H, Kim K-H, Myung H, Oh B-T (2015) Phytoremediation of heavy metals in contaminated water and soil using Miscanthus sp. Goedae-Uksae 1. Int J Phytoremediation 17:515–520

    Article  CAS  Google Scholar 

  • Białowiec A, Albuquerque A, Randerson PF (2014) The influence of evapotranspiration on vertical flow subsurface constructed wetland performance. Ecol Eng 67:89–94

    Article  Google Scholar 

  • Brix H, Schierup H-H (1990) Soil oxygenation in constructed reed beds: the role of macrophyte and soil atmosphere interface oxygen transport. In: Cooper PF, Findlater BC (eds) Constructed wetlands in water pollution control. Pergamon Press, London, pp 53–66

  • Brown K, Ghoshdastidar AJ, Hanmore J, Frazee J, Tong AZ (2013) Membrane bioreactor technology: a novel approach to the treatment of compost leachate. Waste Manag 33:2188–2194

    Article  CAS  Google Scholar 

  • Chian ES, DeWalle FB (1977) Characterization of soluble organic matter in leachate. Environ Sci Technol 11:158–163

    Article  CAS  Google Scholar 

  • Choi J, Geronimo FKF, Maniquiz-Redillas MC, Kang M-J, Kim L-H (2015) Evaluation of a hybrid constructed wetland system for treating urban stormwater runoff. Desalin Water Treat 53:3104–3110

    Article  CAS  Google Scholar 

  • Ciria MP, Solano ML, Soriano P (2005) Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosyst Eng 92:535–544

    Article  Google Scholar 

  • Cooper PF, Job G, Green M, Shutes R (1996) Reed beds and constructed wetlands for wastewater treatment. Water Research Centre, Swindon

    Google Scholar 

  • del Bubba M, Checchini L, Pifferi C, Zanieri L, Lepri L (2004) Olive mill wastewater treatment by a pilot-scale subsurface horizontal flow (SSF-h) constructed wetland. Ann Chim 94:875–887

    Article  Google Scholar 

  • Dong Z, Sun T (2007) A potential new process for improving nitrogen removal in constructed wetlands—promoting coexistence of partial-nitrification and ANAMMOX. Ecol Eng 31:69–78

    Article  Google Scholar 

  • El-Fadel M, Bou-Zeid E, Chahine W, Alayli B (2002) Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Manag 22:269–282

    Article  CAS  Google Scholar 

  • Esfandiari S, Khosrokhavar R, Sekhavat M (2010) A waste-to-energy plant for municipal solid waste management at the composting plant in Isfahan, Iran, 2nd International Conference on Environmental Science and Technology IPCBEE. IACSIT Press, Singapore, pp 449–452

  • Golabi M, Kirk J, Takeshi F, Eri I (2014) Transforming municipal waste into a valuable soil conditioner through knowledge-based resource-recovery management. Int J Waste Resour 4:140

    Google Scholar 

  • Headley TR, Davison L, Huett DO, Müller R (2012) Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia. Water Res 46:345–354

    Article  CAS  Google Scholar 

  • Hu Y, He F, Ma L, Zhang Y, Wu Z (2016) Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems. Bioresour Technol 207:339–345

    Article  CAS  Google Scholar 

  • ISIRI (1994) Treated wastewater standards. Institute of Standards & Industrial Research of Iran, Iran

  • Kadlec R, Knight R (1996) Treatment wetlands. CRC, Boca Raton

    Google Scholar 

  • Kadlec R, Wallace S (2009) Treatment wetlands, 2nd edn. CRCPress, Boca Raton

    Google Scholar 

  • Kadlec R, Knight R, Vymazal J, Brix H, Cooper P, Haberl R (2000) Constructed wetlands for pollution control. In: Processes, performance, design, and operation. IWA Specialist Group on the Use of Macrophytes in Water Pollution Control, London

  • Kato K, Inoue T, Ietsugu H, Koba T, Sasaki H, Miyaji N, Kitagawa K, Sharma PK, Nagasawa T (2013) Performance of six multi-stage hybrid wetland systems for treating high-content wastewater in the cold climate of Hokkaido, Japan. Ecol Eng 51:256–263

    Article  Google Scholar 

  • Korzun EA, Heck HH (1990) Sources and fates of lead and cadmium in municipal solid waste. J Air Waste Manage Assoc 40:1220–1226

    Article  CAS  Google Scholar 

  • Kouki S, M’hiri F, Saidi N, Belaïd S, Hassen A (2009) Performances of a constructed wetland treating domestic wastewaters during a macrophytes life cycle. Desalination 246:452–467

    Article  CAS  Google Scholar 

  • Lee C-Y, Lee C-C, Lee F-Y, Tseng S-K, Liao C-J (2004) Performance of subsurface flow constructed wetland taking pretreated swine effluent under heavy loads. Bioresour Technol 92:173–179

    Article  CAS  Google Scholar 

  • Lin Y-F, Jing S-R, Wang T-W, Lee D-Y (2002) Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environ Pollut 119:413–420

    Article  CAS  Google Scholar 

  • Liu C-H, Lo KV (2001) Ammonia removal from composting leachate using zeolite. I. Characterization of the zeolite. J Environ Sci Health A 36:1671–1688

    Article  CAS  Google Scholar 

  • Maleki A, Zazouli MA, Izanloo H, Rezaee R (2009) Composting plant leachate treatment by coagulation-flocculation process. Am Eurasian J Agric Environ Sci 5:638–643

    CAS  Google Scholar 

  • Masi F, Martinuzzi N (2007) Constructed wetlands for the Mediterranean countries: hybrid systems for water reuse and sustainable sanitation. Desalination 215:44–55

    Article  CAS  Google Scholar 

  • Matheson FE, Sukias JP (2010) Nitrate removal processes in a constructed wetland treating drainage from dairy pasture. Ecol Eng 36:1260–1265

    Article  Google Scholar 

  • Midhun G, Divya L, George J, Jayakumar P, Suriyanarayanan S (2016) Wastewater treatment studies on free water surface constructed wetland system. In: Prashanthi M, Sundaram R (eds) Integrated waste management in India. Environmental Science and Engineering. Springer, Cham

  • Misiti TM, Hajaya MG, Pavlostathis SG (2011) Nitrate reduction in a simulated free-water surface wetland system. Water Res 45:5587–5598

    Article  CAS  Google Scholar 

  • Mojiri A, Ziyang L, Tajuddin RM, Farraji H, Alifar N (2016) Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/zeolite constructed wetland system. J Environ Manag 166:124–130

    Article  CAS  Google Scholar 

  • Narváez L, Cunill C, Cáceres R, Marfà O (2011) Design and monitoring of horizontal subsurface-flow constructed wetlands for treating nursery leachates. Bioresour Technol 102:6414–6420

    Article  Google Scholar 

  • O’luanaigh N, Goodhue R, Gill L (2010) Nutrient removal from on-site domestic wastewater in horizontal subsurface flow reed beds in Ireland. Ecol Eng 36:1266–1276

    Article  Google Scholar 

  • Paul EA (2014) Soil microbiology, ecology and biochemistry. Academic press, Cambridge

    Google Scholar 

  • Platzer C (1999) Design recommendations for subsurface flow constructed wetlands for nitrification and denitrification. Water Sci Technol 40:257–263

    CAS  Google Scholar 

  • Rotkittikhun P, Chaiyarat R, Kruatrachue M, Pokethitiyook P, Baker A (2007) Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Chemosphere 66:45–53

    Article  CAS  Google Scholar 

  • Saeed T, Sun G (2012) A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J Environ Manag 112:429–448

    Article  CAS  Google Scholar 

  • Saeed T, Sun G (2013) A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater. Bioresour Technol 128:438–447

    Article  CAS  Google Scholar 

  • Saeed T, Sun G (2017) A comprehensive review on nutrients and organics removal from different wastewaters employing subsurface flow constructed wetlands. Crit Rev Environ Sci Technol 47:203–288

  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar C, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv CO 4) roots. Plant Sci 166:1035–1043

    Article  CAS  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116

    Article  CAS  Google Scholar 

  • Singh S, Haberl R, Moog O, Shrestha RR, Shrestha P, Shrestha R (2009) Performance of an anaerobic baffled reactor and hybrid constructed wetland treating high-strength wastewater in Nepal—a model for DEWATS. Ecol Eng 35:654–660

    Article  Google Scholar 

  • Spieles DJ, Mitsch WJ (1999) The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low-and high-nutrient riverine systems. Ecol Eng 14:77–91

    Article  Google Scholar 

  • Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller R, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  CAS  Google Scholar 

  • Tanner C, Kadlec R (2003) Oxygen flux implications of observed nitrogen removal rates in subsurface-flow treatment wetlands. Water Sci Technol 48:191–198

    CAS  Google Scholar 

  • Taylor CR, Hook PB, Stein OR, Zabinski CA (2011) Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms. Ecol Eng 37:703–710

    Article  Google Scholar 

  • Trujillo D, Font X, Sánchez A (2006) Use of Fenton reaction for the treatment of leachate from composting of different wastes. J Hazard Mater 138:201–204

    Article  CAS  Google Scholar 

  • Valipour A, Ahn Y-H (2016) Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review. Environ Sci Pollut Res 23:180–197

    Article  CAS  Google Scholar 

  • Vázquez M, De la Varga D, Plana R, Soto M (2013) Vertical flow constructed wetland treating high strength wastewater from swine slurry composting. Ecol Eng 50:37–43

    Article  Google Scholar 

  • Vergeles Y, Vystavna Y, Ishchenko A, Rybalka I, Marchand L, Stolberg F (2015) Assessment of treatment efficiency of constructed wetlands in East Ukraine. Ecol Eng 83:159–168

    Article  Google Scholar 

  • Visvanathan C, Tränkler J, Gongming Z, Nair L, Sankaran S, Kuruparan P, Norbu T, Shapkota P (2004) State of the art review: landfill leachate treatment. En: Technology, A. I. & University, T. (eds.), Shanghai

  • Vymazal J (1999) Nitrogen removal in constructed wetlands with horizontal sub-surface flow - can we determine the key process? In: Vymazal J (ed) Nutrient cycling and retention in natural and constructed wetlands. Backhuys Publishers, Leiden, pp 1–17

  • Vymazal J (2002) The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol Eng 18:633–646

    Article  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    Article  CAS  Google Scholar 

  • Vymazal J (2014) Constructed wetlands for treatment of industrial wastewaters: a review. Ecol Eng 73:724–751

    Article  Google Scholar 

  • Wu S, Austin D, Liu L, Dong R (2011) Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas. Ecol Eng 37:948–954

    Article  Google Scholar 

  • Xia H, Liu S, Ao H (2000) A study on purification and uptake of garbage leachate by vetiver grass. Proceedings of the Second International Conference on Vetiver. Thailand, pp 18–22

  • Yalcuk A, Ugurlu A (2009) Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresour Technol 100:2521–2526

    Article  CAS  Google Scholar 

  • Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721

    Article  CAS  Google Scholar 

  • Zazouli M, Yousefi Z (2008) Removal of heavy metals from solid wastes leachates coagulation-flocculation process. J Appl Sci 8:2142–2147

    Article  CAS  Google Scholar 

  • Zhang L-y, Zhang L, Y-d L, Shen Y-w, Liu H, Xiong Y (2010) Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. Desalination 250:915–920

    Article  CAS  Google Scholar 

  • Zhang X, Inoue T, Kato K, Izumoto H, Harada J, Wu D, Sakuragi H, Ietsugu H, Sugawara Y (2017) Multi-stage hybrid subsurface flow constructed wetlands for treating piggery and dairy wastewater in cold climate. Environ Technol 38:183–191

  • Zhao Y, Collum S, Phelan M, Goodbody T, Doherty L, Hu Y (2013) Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chem Eng J 229:364–370

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadali Alavi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshoodeh, R., Alavi, N. & Paydary, P. Composting plant leachate treatment by a pilot-scale, three-stage, horizontal flow constructed wetland in central Iran. Environ Sci Pollut Res 24, 23803–23814 (2017). https://doi.org/10.1007/s11356-017-0002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0002-6

Keywords

Navigation