Skip to main content

Advertisement

Log in

Influence of transport from urban sources and domestic biomass combustion on the air quality of a mountain area

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The environmental influence of biomass burning for civil uses was investigated through the determination of several air toxicants in the town of Leonessa and its surroundings, in the mountain region of central Italy. Attention was focussed on PM10, polycyclic aromatic hydrocarbons (PAHs) and regulated gaseous pollutants (nitrogen dioxide, ozone and benzene). Two in-field campaigns were carried out during the summer 2012 and the winter 2013. Contemporarily, air quality was monitored in Rome and other localities of Lazio region. In the summer, all pollutants, with the exception of ozone, were more abundant in Rome. On the other hand, in the winter, PAH concentration was higher in Leonessa (15.8 vs. 7.0 ng/m3), while PM10 was less concentrated (22 vs. 34 μg/m3). Due to lack of other important sources and to limited impact of vehicle traffic, biomass burning was identified as the major PAH source in Leonessa during the winter. This hypothesis was confirmed by PAH molecular signature of PM10 (i.e. concentration diagnostic ratios and 206 ion mass trace in the chromatograms). A similar phenomenon (i.e. airborne particulate levels similar to those of the capital city but higher PAH loads) was observed in other locations of the province, suggesting that uncontrolled biomass burning contributed to pollution across the Rome metropolitan area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PAH:

Polycyclic aromatic hydrocarbon

FP:

Fingerprint (molecular signature)

DR:

Diagnostic concentration ratio

MW:

Molecular weight

BaA:

Benz[a]anthracene

BbF:

Benzo[b]fluoranthene

BjF:

Benzo[j]fluoranthene

BkF:

Benzo[k]fluoranthene

BFs:

BbF+BjF+BkF

BPE:

Benzo[ghi]perylene

BeP:

Benzo[e]pyrene

BaP:

Benz[a]pyrene

CH:

Chrysene

DBA:

Dibenz[a,h]anthracene

IP:

Indeno[1,2,3-cd]pyrene

PE:

Perylene

LNS:

Leonessa (Rieti)

TRZ:

Terzone (Rieti)

RDT:

Rome downtown

ROS:

Rome outskirts

RPR:

Rome province

IC:

Ion chromatography

CGC:

Capillary gas chromatography

FID:

Flame ionization detection

MSD (EI-SIM):

Mass spectrometric detection (operated in electron impact, selected ion monitoring mode)

References

  • Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11:4039–4072

    Article  CAS  Google Scholar 

  • Alves CA, Pio CA, Duarte AC (2000) Particulate size distributed organic compounds in a forest atmosphere. Environ Sci Technol 34:4287–4293. doi:10.1021/es000028a

    Article  CAS  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cy 15(4):955–966

    Article  CAS  Google Scholar 

  • Belis CA, Cancelinha J, Duanea M, Forcina V, Pedronia V, Passarella R, Tanet G, Douglas K, Piazzalunga A, Bolzacchini E, Sangiorgi G, Perrone MG, Ferrero L, Fermo P, Larsend BR (2011) Sources for PM air pollution in the Po Plain, Italy: I. Critical comparison of methods for estimating biomass burning contributions to benzo(a)pyrene. Atmos Environ 45:7266–7275

    Article  CAS  Google Scholar 

  • Benner BA, Wise SA, Currie LA, Klouda GA, Klinedinst DB, Zweidinger RB, Stevens RK, Lewis CW (1995) Distinguishing the contributions of residential wood combustion and mobile source emissions using relative concentrations of dimethylphenanthrene isomers. Environ Sci Technol 29:2382–2389. doi:10.1021/es00009a034

    Article  CAS  Google Scholar 

  • Bertoni G, Tappa R, Allegrini I (2001) The internal consistency of the ‘analyst’ diffusive sampler—a long-term field test. Chromatographia 54:653–657

    Article  CAS  Google Scholar 

  • Bertoni G, Tappa R, Bertuccio L, Parmagnani F (2002) Air monitoring of volatile aromatic compounds by means of long-term exposure diffusive samplers. Ann Chim 92:353–361

    CAS  Google Scholar 

  • Bignal Keeley L, Langridge S, Zhou JL (2008) Release of polycyclic aromatic hydrocarbons, carbon monoxide and particulate matter from biomass combustion in a wood-fired boiler under varying boiler conditions. Atmos Environ 42:8863–8871

    Article  Google Scholar 

  • Biomass Task Force (2005) http://www.iea.org/media/pams/uk/PAMs_UKBiomassTaskForce2005.pdf. Accessed 20 July 2016 Report to government. Biomass Task Force, London

    Google Scholar 

  • Boman C, Nordin A, Thaning L (2003) Effects of increased biomass pellet combustion on ambient air quality in residential areas—a parametric dispersion modeling study. Biomass Bioenergy 24:465–474

    Article  CAS  Google Scholar 

  • Borsella E, Di Filippo P, Riccardi C, Spicaglia S, Cecinato A (2004) Data quality of PAH determinations in environmental monitoring. Ann Chim 94:691–698

    Article  CAS  Google Scholar 

  • Brandão M, Levasseur A, Kirschbaum MUF, Weidema BP, Cowie AL, Vedel Jørgensen S, Hauschild MZ, Pennington DW, Chomkhamsri K (2013) Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int J Life Cycle Assess 18(1):230–240

    Article  Google Scholar 

  • CalEPA (2005) California Environment Protection Agency. Air toxics hot spots program risk assessment guidelines. Part II technical support document for describing available cancer potency factors. May 2005

  • Cecinato A, Guerriero G, Balducci C, Muto V (2014) Use of the PAH fingerprints for identifying pollution sources. Urban Climate 10:630–643

    Article  Google Scholar 

  • Cherubini F, Peters GP, Berntsen T, Strømman AH, Ertwich EH (2011) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming GCB. Bioenergy 3:413–426

    CAS  Google Scholar 

  • De Santis F, Allegrini I, Fazio MC, Pasella D, Piredda R (1997) Development of a passive sampling technique for the determination of nitrogen dioxide and sulphur dioxide in ambient air. Anal Chim Acta 346:127–134

    Article  CAS  Google Scholar 

  • De Santis F, Dogeroglu T, Fino A, Menichelli S, Vazzana C, Allegrini I (2002) Laboratory development and field evaluation of a new diffusive sampler to collect nitrogen oxides in the ambient air. Anal Bioanal Chem 373:901–907

    Article  CAS  Google Scholar 

  • DEFRA (Department for Environment, Food and Rural Affairs) (2006) The air quality strategy for England, Scotland, Wales and Northern Ireland. A consultation document on options for further improvements in air quality. HMSO, London https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69336/pb12654-air-quality-strategy-vol1-070712.pdf. Accessed 20 July 2016

    Google Scholar 

  • Delgado-Saborit JM, Stark C, Harrison RM (2014) Use of a versatile high efficiency multiparallel denuder for the sampling of PAHs in ambient air: gas and particle phase concentrations, particle size distribution and artifact formation. Environ Sci Technol 48:499–507

    Article  CAS  Google Scholar 

  • Delmas R, Lacaux JP, Brocard D (1995) Determination of biomass burning emission factors: methods and results. Environ Monit Assess 38(2):181–204

    Article  CAS  Google Scholar 

  • Di Filippo P, Riccardi C, Incoronato F, Sallusti F, Spicaglia S, Cecinato A (2005) Characterization of selected speciated organic compounds associated with particulate matter in ambient air of the outskirts of Rome. Polycycl Aromat Compd 25:393–406

    Article  Google Scholar 

  • Eatough DJ, Wadsworth A, Eatough DA, Crawford JW, Hansen LD, Lewis EA (1993) A multiple-system, multi-channel diffusion denuder sampler for the determination of fine particulate organic material in the atmosphere. Atmos Environ 27A:1213–1219

    Article  CAS  Google Scholar 

  • EMEP/EEA (2013) Air pollutant emission inventory guidebook—2013—published 29 Aug 2013 technical report No 12/2013 (Part B)

  • Fuchsz M, Kohlheb N (2015) Comparison of the environmental effects of manure- and crop-based agricultural biogas plants using life cycle analysis. J Clean Prod 86:60–66

    Article  CAS  Google Scholar 

  • Galarneau E (2008) Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmos Environ 42:8139–8149

    Article  CAS  Google Scholar 

  • Gianelle V, Colombi C, Caserini S, Ozgen S, Galante S, Marongiu A, Lanzani G (2013) Benzo(a)pyrene air concentrations and emission inventory in Lombardy region, Italy. Atmospheric Pollution Research 4:257–266

    Article  CAS  Google Scholar 

  • Greenberg A (1999) Chemical and health consequences of particle/vapour partitioning of PAH and their derivatives. In: Lane DA (ed) Gas and particle phase measurements of atmospheric organic compounds. Gordon and Breach Science Publ, Amsterdam, pp. 1–11 ISBN 9789056996475

    Google Scholar 

  • Holden AS, Sullivan AP, Munchak LA, Kreidenweis SM, Schichtel BA, Malm WC, Collett JL (2011) Determining contributions of biomass burning and other sources to fine particle contemporary carbon in the western United States. Atmos Environ 45:1986–1993

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2005) IARC handbooks of cancer prevention, vol 10. IARC

  • International Agency for Research on Cancer (IARC) (2010) IARC handbooks of cancer prevention, vol 92. IARC

  • International Agency for Research on Cancer (IARC) (2012) IARC handbooks of cancer prevention, vol 100F. IARC

  • Jacobson MZ (2014) Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J Geophys Res Atmos 119(14):8980–9002

    Article  CAS  Google Scholar 

  • Johnston FH, Hanigan IC, Henderson SB, Morgan GG (2013) Evaluation of interventions to reduce air pollution from biomass smoke on mortality in Launceston, Australia: retrospective analysis of daily mortality, 1994-2007. BMJ 346:e8446. doi:10.1136/bmj.e8446

    Article  Google Scholar 

  • Katsoyiannis A, Breivik K (2014) Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environ Pollut 184:488–494

    Article  CAS  Google Scholar 

  • Kleeman MJ, Schauer JJ, Cass GR (2000) Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ Sci Technol 34:1132–1142

    Article  CAS  Google Scholar 

  • Kleeman MJ, Riddle SJ, Jakober CA (2008) Size distribution of particle-phase molecular markers during a severe winter pollution episode. Environ Sci Technol 42:6469–6475

    Article  CAS  Google Scholar 

  • Lee RGM, Coleman P, Jones JL, Jones KC, Lohmann R (2005) Emission factors and importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the domestic burning of coal and wood in the UK. Environ Sci Technol 39:1436–1447

    Article  CAS  Google Scholar 

  • Liu S, Tao S, Liu W et al (2007) Atmospheric polycyclic aromatic hydrocarbons in North China: a winter-time study. Environ Sci Technol 41:8256–8261

    Article  CAS  Google Scholar 

  • Liu C, Chung CE, Zhang F, Yan Y (2016) The colors of biomass burning aerosols in the atmosphere. Scientific Reports 6:28267. doi:10.1038/srep28267

    Article  CAS  Google Scholar 

  • Lobscheid AB, McKone TE (2004) Constraining uncertainties about the sources and magnitude of polycyclic aromatic hydrocarbon (PAH) levels in ambient air: the state of Minnesota as a case study. Atmos Environ 38:5501–5515

    Article  CAS  Google Scholar 

  • Lohman R, Northcott G, Jonec K (2000) Assessing the contribution of diffuse domestic burning as a source of PCDD/Fs, PCBs, and PAHs to the U.K. atmosphere. Environ Sci Technol 34:2892–2899

    Article  Google Scholar 

  • Loomis D, Grosse Y, Lauby-Secretan B et al (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 4:1262–1263

    Article  Google Scholar 

  • Loomis D, Wei H, Guosheng C (2014) The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chinese journal of cancer 33:189–196

    Article  CAS  Google Scholar 

  • Luhar AK, Galbally IE, Keywood M (2006) Modelling PM10 concentrations and carrying capacity associated with wood heater emissions in Launceston, Tasmania. Atmos Environ 40:5543–5557

    Article  CAS  Google Scholar 

  • Marchand N, Besombes JL, Chevron N, Masclet P, Aymoz G, Jaffrezo JL (2004) Polycyclic aromatic hydrocarbons (PAHs) in the atmospheres of two French alpine valleys: sources and temporal patterns. Atmos Chem Phys 4:1167–1181

    Article  CAS  Google Scholar 

  • Martellini T, Giannoni M, Lepri L, Katsoyiannis A, Cincinelli A (2014) One year intensive PM2.5 bound polycyclic aromatic hydrocarbons monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. Environ Pollut 164:252–258

    Article  Google Scholar 

  • Masiol M, Squizzato S, Rampazzo G, Pavoni B (2014) Source apportionment of PM2.5 at multiple sites in Venice (Italy): spatial variability and the role of weather. Atmos Environ 98:78–88

    Article  CAS  Google Scholar 

  • Mastral AM, Callen MS (2000) A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ Sci Technol 34:3051–3057

    Article  CAS  Google Scholar 

  • Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19:67–106

    Article  CAS  Google Scholar 

  • Paolini V, Guerriero E, Bacaloni A, Rotatori M, Benedetti P, Mosca S (2016) Simultaneous sampling of vapor and particle-phase carcinogenic polycyclic aromatic hydrocarbons on functionalized glass fiber filters. Aerosol Air Qual Res 16:175–183

    Article  CAS  Google Scholar 

  • Peltonen K, Kuljukka T (1995) Air sampling and analysis of polycyclic aromatic hydrocarbons. J Chromatogr A 710:93–108

    Article  CAS  Google Scholar 

  • Petracchini F, Paciucci L, Vichi F, D’Angelo B, Aihati A, Liotta F, Paolini V, Cecinato A (2016) Gaseous pollutants in the city of Urumqi, Xinjiang: spatial and temporal trends, sources and implications. Atmospheric Pollution Research 7:925–934

    Article  Google Scholar 

  • Polissar A, Hopke P, Poirot R (2001) Atmospheric aerosol over Vermont: chemical composition and sources. Environ Sci Technol 35:4604–4621

    Article  CAS  Google Scholar 

  • Possanzini M, Di Palo V, Tagliacozzo G, Cecinato A (2006) Physico-chemical artefacts in atmospheric PAH denuder sampling. Polycycl Aromat Compd 26:185–195

    Article  CAS  Google Scholar 

  • Romagnoli P, Balducci C, Perilli M, Gherardi M, Gordiani A, Gariazzo C, Gatto MP, Cecinato A (2014) Indoor PAHs at schools, homes and offices in Rome. Atmos Environ 92:51–59

    Article  CAS  Google Scholar 

  • Saarikoski SK, Sillanpää MK, Saarnio KH, Hillamo RE, Pennanen AS, Salonen RO (2008) Impact of biomass combustion on urban fine particulate matter in central and northern Europe. Water Air Soil Pollut 191:265–277

    Article  CAS  Google Scholar 

  • Sexton K, Spengler JD, Treitman RD, Turner WA (1984) Winter air quality in a wood-burning community: a case study in Waterbury, Vermont. Atmos Environ 18:1357–1370

    Article  CAS  Google Scholar 

  • Shen G, Wei S, Zhang Y, Wang B, Wang R, Shen H, Li W, Huang Y, Chen Y, Chen H, Tao S (2013) Emission and size distribution of particle-bound polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Biomass Bioenerg 55:141–147

    Article  CAS  Google Scholar 

  • Smith K, Samet J, Romieu I et al (2000) Indoor air pollution in developing countries and acute lower respiratory infections in children. Thorax 55:518–532

    Article  CAS  Google Scholar 

  • Tobiszewski M, Namiesnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  Google Scholar 

  • Venkataraman C, Friedlander SK (1994b) Distribution of polycyclic aromatic hydrocarbons and elemental carbon. II. Environ Sci Technol 28:563–572

    Article  CAS  Google Scholar 

  • Venkataraman C, Lyons JM, Friedlander SK (1994a) Distribution of polycyclic aromatic hydrocarbons and elemental carbon. I. Sampling, measurement methods, and source characterization. Environ Sci Technol 28:555–562

    Article  CAS  Google Scholar 

  • WHO (2000) Air quality guidelines for Europe; second edition. Copenhagen, WHO Regional Office for Europe, 2000 (WHO regional publications. European series; No 91)

  • Wolff GT, Lioy PL, Taylor RS (1987) The diurnal variations of ozone at different altitudes on a rural mountain the eastern United States. JAPCA 37:45–48

    Article  CAS  Google Scholar 

  • Xie M, Hannigan MP, Barsanti KC (2014) Gas/ particle partitioning of n-alkanes, PAHs and oxygenated PAHs in urban Denver. Atmos Environ 95:355–362

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River Basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zhang XL, Tao S, Liu WX, Zuo Q, Liu SZ (2005) Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: a multimedia approach. Environ Sci Technol 39:9109–9114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Department for Territory of Lazio Region within SELVA Project. We are grateful to our colleague Dr. Maria Catrambone and her team, who provided the PM concentration data at Leonessa and Terzone, and to Dr. Erica Perreca who participated with the analyses of diffusive samplers. The cooperation of Dr. Sergio Ceradini and Mr. Tech. Fabrizio Sacco from ARPA Lazio Agency was important in performing PAH characterization in the outskirts of Rome and the four abovementioned towns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Paolini.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petracchini, F., Romagnoli, P., Paciucci, L. et al. Influence of transport from urban sources and domestic biomass combustion on the air quality of a mountain area. Environ Sci Pollut Res 24, 4741–4754 (2017). https://doi.org/10.1007/s11356-016-8111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8111-1

Keywords

Navigation