Skip to main content
Log in

How test vessel properties affect the fate of silver nitrate and sterically stabilized silver nanoparticles in two different test designs used for acute tests with Daphnia magna

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The relation between test conditions such as medium composition or pH on silver nanoparticle (AgNP) behavior and its link to toxicity is one of the major topics in nanoecotoxicological research in the last years. In addition, the adaptation of the ecotoxicological standard tests for nanomaterials is intensely discussed to increase comparability and reliability of results. Due to the limitation of test material production volumes and the need for high-throughput screening, miniaturization has been proposed for several test designs. In the present study, the effect of a miniaturization of the acute Daphnia immobilization test on AgNP behavior was investigated. For this purpose, available, adsorbed, and dissolved silver fractions were measured using AgNP and silver nitrate in the following two test designs: a standard test (ST) design and a miniaturized test (MT) design with reduced test volume and less animals. Despite the increase in surface area in relation to the test volume in MT, more AgNP attached to the ST vessel surface, so that in this case, exposure concentrations were significantly lower compared to the MT assessment. Ionic silver concentrations resulting from AgNP dissolution were similar in both test designs. The same was observed for ionic silver concentrations in silver nitrate (AgNO3) treatments, but adsorbed silver was also higher in ST treatments. Assessing the structure-activity relationships revealed that surface properties such as hydrophobicity, potential binding sites, or surface roughness were of higher importance than surface:volume ratios for both test substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen HJ, Impellitteri CA, Macke DA, Heckmann JL, Poynton HC, Lazorchak JM, Govindaswamy S, Roose DL, Nadagouda MN (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29:2742–2750

    Article  Google Scholar 

  • Baalousha M, Nur Y, Römer I et al (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ 454-455:119–131. doi:10.1016/j.scitotenv.2013.02.093

    Article  CAS  Google Scholar 

  • Bandyopadhyay K, Patil V, Vijayamohanan K, Sastry M (1997) Adsorption of silver colloidal particles through covalent linkage to self-assembled monolayers. Langmuir 13:5244–5248

    Article  CAS  Google Scholar 

  • Baumann J, Sakka Y, Bertrand C, Köser J, Filser J (2014) Adaptation of the Daphnia sp. acute toxicity test: miniaturization and prolongation for the testing of nanomaterials. Environ Sci PollutRes 21:2201–2213

    Article  CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger KD, Hansen SF (2009) Setting the limits for engineered nanoparticles in European surface waters—are current approaches appropriate? J Environ Monit 11:1774

    Article  CAS  Google Scholar 

  • Blinova I, Niskanen J, Kajankari P, Kanarbik L, Käkinen A, Tenhu H, Penttinen O, Kahru A (2013) Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ Sci Pollut Res 20:3456–3463. doi:10.1007/s11356-012-1290-5

    Article  CAS  Google Scholar 

  • Bright RM, Musick MD, Natan MJ (1998) Preparation and characterization of Ag colloid monolayers. Langmuir 14:5695–5701

    Article  CAS  Google Scholar 

  • Burger, R. W.; Gerenser LJ. The chemistry of metal/polymer interface formation: relevance to adhesion. In Metallized Plastics 3; Mittal, K. L., Ed.; Springer 1992; 179–193.

  • Choi O, Clevenger TE, Deng B, Surampalli RY, Ross L Jr, Hu Z (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:1879–1886

    Article  CAS  Google Scholar 

  • Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605

    Article  CAS  Google Scholar 

  • Engelke M, Koeser J, Hackmann S, Zhang H, Mädler L, Filser J (2014) A miniaturized solid contact test with Arthrobacter globiformis for the assessment of the environmental impact of silver nanoparticles: terrestrial toxicity of silver nanoparticles. Environ Toxicol Chem 33:1142–1147

    Article  CAS  Google Scholar 

  • Fabrega J, Fawcett S, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci. Technol. 43:7285–7290

    Article  CAS  Google Scholar 

  • Fernández JF, Jastorff B, Störmann R, Stolte S, Thöming J (2011) Thinking in terms of structure-activity-relationships (T-SAR): a tool to better understand nanofiltration membranes. Membranes 1:162–183. doi:10.3390/membranes1030162

    Article  Google Scholar 

  • Filser J, Wiegmann S, Schröder B (2014) Collembola in ecotoxicology—any news or just boring routine? Appl Soil Ecol 83:193–199

    Article  Google Scholar 

  • Flores CY, Diaz C, Rubert A, GA B, MS M, de Mele MA FL, RC S, PL S, Vericat C (2010) Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa. J Colloid Interface Sci 350:402–408

    Article  CAS  Google Scholar 

  • Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ. Sci. Technol. 46:7037–7045

    Article  CAS  Google Scholar 

  • Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    Article  CAS  Google Scholar 

  • Großmann, J. Einfluß von Plasmabehandlung auf die Haftfestigkeit vakuumtechnisch hergestellter Polymer-Verbunde. Ph.D. Dissertation, University of Erlangen-Nürnberg, Nürnberg, Germany, 2009.

  • Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, Metcalfe C, Steevens J, Klaine S, Koelmans A, Horne N (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31

    Article  CAS  Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  • Hensel A, Rischer M, Di Stefano D, Behr I, Wolf-Heuss E (1996) Full chromatographic characterization of nonionic surfactant polyoxyethylene gylcerol trioleate. Pharm Acta Helv 72:185–189

    Article  Google Scholar 

  • Jin X, Li M, Wang J, Marambio-Jones C, Peng F, Huang X, Damoiseaux R, Hoek E (2010) M. V. High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environ Sci Technol 44:7321–7328

    Article  CAS  Google Scholar 

  • Jódar-Reyes AB, Ortega-Vinuesa JL, Martín-Rodríguez A (2005) Adsorption of different amphiphilic molecules onto polystyrene latices. J Colloid Interface Sci 282:439–447

    Article  Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  Google Scholar 

  • Kleimann J, Lecoultre G, Papastavrou G, Jeanneret S, Galletto P, Koper GJM, Borkovec M (2006) Deposition of nanosized latex particles onto silica and cellulose surfaces studied by optical reflectometry. J Colloid Interface Sci 303:460–471

    Article  CAS  Google Scholar 

  • Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834

    Article  CAS  Google Scholar 

  • Lee S, Kim K, Shon HK, Kim SD, Cho J (2011) Biotoxicity of nanoparticles: effect of natural organic matter. J Nanopart Res 13:3051–3061

    Article  CAS  Google Scholar 

  • Li X, Lenhart JJ (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ. Sci. Technol. 46:5378–5386

    Article  CAS  Google Scholar 

  • Lieser KH, Hofmann B, Stingl U (1988) Sorption von Silber an chlormethyliertem Polystyrol. Angew Makromol Chem 163:161–168

    Article  CAS  Google Scholar 

  • Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M (2012) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 46:7027–7036

    Article  CAS  Google Scholar 

  • Mackevica A, Skjolding LM, Gergs A, Palmqvist A, Baun A (2015) Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions. Aquat Toxicol 161:10–16

    Article  CAS  Google Scholar 

  • Malysheva A, Ivask A, Hager C, Brunetti G, ER M, Lombi E, NH V (2016) Sorption of silver nanoparticles to laboratory plastic during (eco)toxicological testing. Nanotoxicology 10:385–390. doi:10.3109/17435390.2015.1084059

    Article  CAS  Google Scholar 

  • Michna A, Adamczyk Z, Oćwieja M, Bielańska E (2011) Kinetics of silver nanoparticle deposition onto poly(ethylene imine) modified mica determined by AFM and SEM measurements. Colloids Surf Physicochem Eng Asp 377:261–268

    Article  CAS  Google Scholar 

  • Nasser F, Lynch I (2016) Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J Proteome 137:45–51. doi:10.1016/j.jprot.2015.09.005

    Article  CAS  Google Scholar 

  • Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, 2004 10.1787/9789264069947-en.

  • R Core Team; R: A language and environment for statistical computing; R Foundation for Statistical Computing; 2014; http://www.R-project.org.

  • Reicho, A. Chemisorption of atomic hydrogen on clean and Cl-covered Ag (111). Ph.D. Dissertation, University of Stuttgart, Stuttgart, Germany, 2008.

  • Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown GE, Lowry GV (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ. Sci. Technol. 46:6992–7000

    Article  CAS  Google Scholar 

  • Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hessellöv M, Taylor CMVM, Soares AMVM, Loureiro S (2014) Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466-467:232–241. doi:10.1016/j.scitotenv.2013.06.101

    Article  CAS  Google Scholar 

  • Sakka Y, Skjolding LM, Mackevica A, Filser J, Baun A (2016) Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna. Aquat Toxicol 177:526–535. doi:10.1016/j.aquatox.2016.06.025

    Article  CAS  Google Scholar 

  • Seitz F, Rosenfeldt RR, Storm K, Metreveli G, Schaumann G, Schulz R, Bundschuh M (2015) Effects of silver nanoparticle properties, media pH and dissolved organic matter on toxicity to Daphnia magna. Ecotoxicol Environ Saf 111:263–270. doi:10.1016/j.ecoenv.2014.09.031

    Article  CAS  Google Scholar 

  • Sekine R, Khurana K, Vasilev K, Lombi E, Donner E (2015) Quantifying the adsorption of ionic silver and functionalized nanoparticles during ecotoxicity testing: test container effects and recommendations. Nanotoxicology 9:1005–1012. doi:10.3109/17435390.2014.994570

    Article  Google Scholar 

  • Selmani A, Lützenkirchen J, Kallay N, Preočanin T (2014) Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems. J Phys Condens Matter 26:244104

    Article  Google Scholar 

  • Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL (2014) Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interf Sci 204:15–34

    Article  CAS  Google Scholar 

  • Shen L, Guo A, Zhu X (2011) Tween surfactants: adsorption, self-organization, and protein resistance. Surf Sci 605:494–499

    Article  CAS  Google Scholar 

  • Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468-469:968–976

    Article  CAS  Google Scholar 

  • Song JE, Phrenat T, Marinakos S, Xiao Y, Liu J, Wiesner MR, Tilton RD, Lowry GV (2011) Hydrophobic interactions increase attachment of gum Arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces. Environ. Sci. Technol. 45:5988–5995

    Article  CAS  Google Scholar 

  • Soukupová J, Kvítek L, Panáček A, Nevěčná T, Zbořil R (2008) Comprehensive study on surfactant role on silver nanoparticles (NPs) prepared via modified Tollens process. Mater Chem Phys 111:77–81

    Article  Google Scholar 

  • Thio BJR, Montes MO, Mahmoud MA, Lee D, Zhou D, Keller AA (2012) Mobility of capped silver nanoparticles under environmentally relevant conditions. Environ. Sci. Technol. 46:6985–6991

    Article  CAS  Google Scholar 

  • Topuz E, Sigg L, Talinli I (2014a) A systematic evaluation of agglomeration of Ag and TiO2 nanoparticles under freshwater relevant conditions. Environ Pollut 193:37–44. doi:10.1016/j.envpol.2014.05.029

    Article  CAS  Google Scholar 

  • Topuz E, Sigg L, Talinli I (2014b) A systematic evaluation of agglomeration of Ag and TiO2 nanoparticles under freshwater relevant conditions. Environ Pollut 193:37–44

    Article  CAS  Google Scholar 

  • Ulm L, Krivohlavek A, Jurašin D, Ljubojević M, Šinko G, Crnković T, Žuntar I, Šikić S, Vrěek I (2015) V. Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles. Environ Sci Pollut 22:19990–19999. doi:10.1007/s11356-015-5201-4

    Article  CAS  Google Scholar 

  • Wigger H, Hackmann S, Zimmermann T, Koeser J, Thöming J, von Gleich A (2015) Influences of use activities and waste management on environmental releases of engineered nanomaterials. Sci Total Environ 535:160–171

    Article  CAS  Google Scholar 

  • Yang Y, Shi J, Tanaka T, Nogami M (2007) Self-assembled silver nanochains for surface-enhanced Raman scattering. Langmuir 23:12042–12047

    Article  CAS  Google Scholar 

  • Zhao C-M, Wang W-X (2010) Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ Sci Technol 44:7699–7704

    Article  CAS  Google Scholar 

  • Zhao C-M, Wang W-X (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892. doi:10.1002/etc.451

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Silver nanoparticles (OECD material NM-300 K) were provided by the UMSICHT project granted by the German Ministry for Education and Research (BMBF 03X0091). The authors thank Petra Witte from the Working Group of Historical Geology and Paleontology of the University of Bremen for making the SEM pictures of the prepared well slides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Sakka.

Ethics declarations

Funding

Silver nanoparticles (OECD material NM-300 K) were provided by the UMSICHT project granted by the German Ministry for Education and Research (BMBF 03X0091).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Article editorial responsibility: Thomas D. Bucheli

Electronic supplementary material

ESM 1

(DOC 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakka, Y., Koeser, J. & Filser, J. How test vessel properties affect the fate of silver nitrate and sterically stabilized silver nanoparticles in two different test designs used for acute tests with Daphnia magna . Environ Sci Pollut Res 24, 2495–2506 (2017). https://doi.org/10.1007/s11356-016-7913-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7913-5

Keywords

Navigation