Skip to main content
Log in

Characteristics of polycyclic aromatic hydrocarbons in food oils in Beijing catering services

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The concentrations and characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in 48 oil samples randomly collected from 30 catering services that employ six cooking methods were quantified via high-performance liquid chromatography (HPLC). These 16 PAHs were detected in almost all of the samples. The levels of Σ16PAHs, Σ4PAHs, benzo[a]pyrene (BaP), and total BaP equivalents (ΣBaPeq) for the six cooking methods exceeded the legal limit. The concentrations of Σ4PAHs were approximately 9.5 to 16.4 times the legal limit proposed by the European Commission (Off J Eur Union 215:4–8, 2011), and the level of BaP exceeded the national standard in China by 4.7- to 10.6-fold, particularly in oil from fried foods. Low molecular weight PAHs (LMW PAHs) were predominant in fried food oil from different catering services and accounted for 94.8 % of these oils, and the ΣBaPeq of the high molecular weight PAHs (HMW PAHs) was 11.5-fold higher than that of the LMW PAHs. The concentrations of Σ16PAHs (3751.9–7585.8 μg/kg), Σ4PAHs (144.6–195.7 μg/kg), BaP (79.7–135.8 μg/kg), and ΣBaPeq (231.0–265.4 μg/kg) were highest in the samples from fast food restaurants/buffets (FB), followed by those from fried food stalls (FS) and then cooking restaurants/cafeterias (RC). The results of this study suggest that the government should strengthen control and supervision of PAH contamination in food and edible oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aaslyng MD, Duedahl-Olesen L, Jensen K, Meinert L (2013) Content of heterocyclic amines and polycyclic aromatic hydrocarbons in pork, beef and chicken barbecued at home by Danish consumers. Meat Sci 93:85–91. doi:10.1016/j.meatsci.2012.08.004

    Article  CAS  Google Scholar 

  • Abramsson-Zetterberg L, Maurer B (2015) Fluoranthene and phenantrene, two predominant PAHs in heat-prepared food, do not influence the frequency of micronucleated mouse erythrocytes induced by other PAH. Toxicol Rep 2:1057–1063

    Article  CAS  Google Scholar 

  • Alomirah H, Al-Zenki S, Al-Hooti S, Zaghloul S, Sawaya W, Ahmed N, Kannan K (2011) Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 22:2028–2035. doi:10.1016/j.foodcont.2011.05.024

    Article  CAS  Google Scholar 

  • Alomirah H, Al-Zenki S, Husain A, Sawaya W, Ahmed N, Gevao B, Kannan K (2010) Benzo[a]pyrene and total polycyclic aromatic hydrocarbons (PAHs) levels in vegetable oils and fats do not reflect the occurrence of the eight genotoxic PAhs. Food Addit Contam 27:869–878. doi:10.1080/19440040903493793

    Article  CAS  Google Scholar 

  • Amzad Hossain M, Salehuddin SM (2012) Polycyclic aromatic hydrocarbons (PAHs) in edible oils by gas chromatography coupled with mass spectroscopy. Arab J Chem 5:391–396. doi:10.1016/j.arabjc.2010.09.012

    Article  Google Scholar 

  • Armstrong B, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 112:970–978. doi:10.1289/ehp.6895

    Article  CAS  Google Scholar 

  • ATSDR (1995) Chemical and physical information. In: Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). ATSDR, Atlanta, pp. 209–221

    Google Scholar 

  • Camargo MCR, Antoniolli PR, Vicente E (2011) HPLC-FLD simultaneous determination of 13 polycyclic aromatic hydrocarbons: validation of an analytical procedure for soybean oils. J Braz Chem Soc 22:1354–1361. doi:10.1590/S0103-50532011000700022

    Article  CAS  Google Scholar 

  • Chen BH, Chen YC (2001) Formation of polycyclic aromatic hydrocarbons in the smoke from heated model lipids and food lipids. J Agric Food Chem 49:5238–5243. doi:10.1021/jf0106906

    Article  CAS  Google Scholar 

  • Chen Y, Shen G, Su S, Shen H, Huang Y, Li T, Li W, Zhang Y, Lu Y, Chen H, Yang C, Lin N, Zhu Y, Fu X, Liu W, Wang X, Tao S (2014) Contamination and distribution of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons in smoked meat. Environ Sci Pollut Res 21:11521–11530. doi:10.1007/s11356-014-3129-8

    Article  CAS  Google Scholar 

  • Chen JW, Wang SL, Hsieh DP, Yang HH, Lee HL (2012) Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions. Sci Total Environ 417–418:68–75. doi:10.1016/j.scitotenv.2011.12.012

    Article  Google Scholar 

  • China Standard (2005) Maximum levels for contaminants in food GB2762-2005. China State Environmental Protection Administration, Beijing

    Google Scholar 

  • Chung SY, Yettella RR, Kim JS, Kwon K, Kim MC, Min DB (2011) Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chem 129:1420–1426. doi:10.1016/j.foodchem.2011.05.092

    Article  CAS  Google Scholar 

  • Ciecierska M, Obiedziński MW (2013) Polycyclic aromatic hydrocarbons in vegetable oils from unconventional sources. Food Control 30:556–562. doi:10.1016/j.foodcont.2012.07.046

    Article  CAS  Google Scholar 

  • Dennis MJ, Massey RC, Cripps G, Venn I, Howarth N, Lee G (1991) Factors affecting the polycyclic aromatic hydrocarbon content of cereals, fats and other food products. Food Addit Contam 8:517–530. doi:10.1080/02652039109374004

    Article  CAS  Google Scholar 

  • Domingo JL (2011) Influence of cooking processes on the concentrations of toxic metals and various organic environmental pollutants in food: a review of the published literature. Crit Rev Food Sci Nutr 51:29–37. doi:10.1080/10408390903044511

    Article  CAS  Google Scholar 

  • Dost K, İdeli C (2012) Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV–Vis detection. Food Chem 133:193–199. doi:10.1016/j.foodchem.2012.01.001

    Article  CAS  Google Scholar 

  • Drabova L, Tomaniova M, Kalachova K, Kocourek V, Hajslova J, Pulkrabova J (2013) Application of solid phase extraction and two-dimensional gas chromatography coupled with time-of-flight mass spectrometry for fast analysis of polycyclic aromatic hydrocarbons in vegetable oils. Food Control 33:489–497. doi:10.1016/j.foodcont.2013.03.018

    Article  CAS  Google Scholar 

  • Duan XL, Wei FS (2002) The environmental pollution caused by benzo [a] pyrene, its harm to health and the research focuses on it. World Sci Technol Res Dev 24:11–17 in Chinese

    Google Scholar 

  • Dyremark A, Westerholm R, Övervik E, Gustavsson J (1995) PAH emissions from charcoal grilling. Atmos Environ 13:1553–1558

    Article  Google Scholar 

  • EFSA Panel on Contaminants in the Food Chain (CONTAM) Panel Members (2008) Polycyclic aromatic hydrocarbons in food: scientific opinion of the panel on contaminants in the food chain. EFSA J 724:1–114

    Google Scholar 

  • European Commission (2011) Commission regulation (EU) No 835/2011 of 19 August 2011 amending regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in food stuffs. Off J Eur Union 215:4–8

    Google Scholar 

  • Falcó G, Domingo JL, Llobet JM, Teixidó A, Casas C, Müller L (2003) Polycyclic aromatic hydrocarbons in foods: human exposure through the diet in Catalonia. Spain. J Food Prot 66:2325–2331

    Article  Google Scholar 

  • Farhadian A, Jinap S, Abas F, Sakar ZI (2010) Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control 21:606–610. doi:10.1016/j.foodcont.2009.09.002

    Article  CAS  Google Scholar 

  • Farhadian A, Jinap S, Faridah A, Zaidul ISM (2012) Effects of marinating on the formation of polycyclic aromatic hydrocarbons(benzo[a]pyrene, benzo[b]fluoranthene and fluoranthene) in grilled beef meat. Food Control 28:420–425. doi:10.1016/j.foodcont.2012.04.034

    Article  CAS  Google Scholar 

  • Farhadian A, Jinap S, Hanifah HN, Zaidul IS (2011) Effects of meat preheating and wrapping on the levels of polycyclic aromatic hydrocarbons in charcoal-grilled meat. Food Chem 124:141–146. doi:10.1016/j.foodchem.2010.05.116

    Article  CAS  Google Scholar 

  • Ferrarese E, Andreottola G, Oprea IA (2008) Remediation of PAH-contaminated sediments by chemical oxidation. J Hazard Mater 152:128–139. doi:10.1016/j.jhazmat.2007.06.080

    Article  CAS  Google Scholar 

  • Gilbert J (1994) The fate of environmental contaminants in the food chain. Sci Total Environ 143:103–111. doi:10.1016/0048-9697(94)90536-3

    Article  CAS  Google Scholar 

  • Gomes A, Santos C, Almeida J, Elias M, Roseiro LC (2013) Effect of fat content, casing type and smoking procedures on PAHs contents of Portuguese traditional dry fermented sausages. Food Chem Toxicol 58:369–374. doi:10.1016/j.fct.2013.05.015

    Article  CAS  Google Scholar 

  • Gong CB, Wang ZX, Dong FG, Guo YL, Qi C (2013) Contamination degree and health risk assessment of polycyclic aromatic hydrocarbons in edible vegetable oil. Chin Oil Fats 5:3–4 in Chinese

    Google Scholar 

  • Hao X, Li J, Yao Z (2016) Changes in PAHs levels in edible oils during deep-frying process. Food Control 66:233–240. doi:10.1016/j.foodcont.2016.02.012

    Article  CAS  Google Scholar 

  • He L, Hu M, Huang X, Yu B, Zhang Y, Liu D (2004) Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmos Environ 38:6557–6564. doi:10.1016/j.atmosenv.2004.08.034

    Article  CAS  Google Scholar 

  • Ibaánez R, Agudo A, Berenguer A, Jakszyn P, Tormo MJ, Sanchez MJ, Quirós JR, Pera G, Navarro C, Martinez C, Larrañaga N, Dorronsoro M, Chirlaque MD, Barricarte A, Ardanaz E, Amiano P, Gonzálezi CA (2005) Dietary intake of polycyclic aromatic hydrocarbons in a Spanish population. J Food Protect 68:2190–2195

    Article  Google Scholar 

  • Jacob J, Karcher W, Belliardo JJ, Wagstaffe PJ (1986) Polycyclic aromatic compounds of environmental and occupational importance. Fresenius Z Anal Chem 323:1–10. doi:10.1007/BF00531122

    Article  CAS  Google Scholar 

  • Janoszka B, Warzecha L, Blaszczyk U, Bodzek D (2004) Organic compounds formed in thermally treated high-protein food. Part I: polycyclic aromatic hydrocarbons. Acta Chromatogr 14:115–128

    CAS  Google Scholar 

  • Jiang D, Xin C, Li W, Chen J, Li F, Chu Z, Xiao P, Shao L (2015) Quantitative analysis and health risk assessment of polycyclic aromatic hydrocarbons in edible vegetable oils marketed in Shandong of China. Food Chem Toxicol 83:61–67. doi:10.1016/j.fct.2015.06.001

    Article  CAS  Google Scholar 

  • Kang B, Lee BM, Shin HS (2014) Determination of polycyclic aromatic hydrocarbon (PAH) content and risk assessment from edible oils in Korea. J Toxicol Environ Health A 77:1359–1371. doi:10.1080/15287394.2014.951593

    Article  CAS  Google Scholar 

  • Kao TH, Chen S, Chen CJ, Huang CW, Chen BH (2012) Evaluation of analysis of polycyclic aromatic hydrocarbons by the QuEChERS method and gas chromatography-mass spectrometry and their formation in poultry meat as affected by marinating and frying. J Agric Food Chem 60:1380–1389. doi:10.1021/jf204650u

    Article  CAS  Google Scholar 

  • Kolarovič L, Traitler H (1982) Determination of polycyclic aromatic hydrocarbons in vegetable oils by caffeine complexation and glass capillary gas chromatography. J Chromatogr A 237:263–272. doi:10.1016/S0021-9673(00)83232-X

    Article  Google Scholar 

  • Lee ML, Novotny MV, Bartle KD (1981) Analytical chemistry of polycyclic aromatic compounds. Academic Press, New York, p. 24

    Google Scholar 

  • Lei BL, Zhang KQ, An J, Zhang XY, Yu YX (2015) Human health risk assessment of multiple contaminants due to consumption of animal-based foods available in the markets of shanghai, China. Environ Sci Pollut Res 6:4434–4446

    Article  Google Scholar 

  • Li G, Wu S, Wang L, Akoh CC (2016) Concentration, dietary exposure and health risk estimation of polycyclic aromatic hydrocarbons (PAHs) in youtiao, a Chinese traditional fried food. Food Control 59:328–336. doi:10.1016/j.foodcont.2015.06.003

    Article  CAS  Google Scholar 

  • Linares V, Perelló G, Nadal M, Gómez-Catalán J, Llobet JM, Domingo JL (2010) Environmental versus dietary exposure to POPs and metals: a probabilistic assessment of human health risks. J Environ Monit 12:681–688. doi:10.1039/b914962g

    Article  CAS  Google Scholar 

  • Martorell I, Perelló G, Martí-Cid R, Castell V, Llobet JM, Domingo JL (2010) Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: temporal trend. Environ Int 36:424–432. doi:10.1016/j.envint.2010.03.003

    Article  CAS  Google Scholar 

  • McGrath TE, Wooten JB, Geoffrey Chan W, Hajaligol MR (2007) Formation of polycyclic aromatic hydrocarbons from tobacco: the link between low temperature residual solid (char) and PAH formation. Food Chem Toxicol 45:1039–1050. doi:10.1016/j.fct.2006.12.010

    Article  CAS  Google Scholar 

  • Menichini E, Bocca A, Merli F, Ianni D, Monfredini F (1991) Polycyclic aromatic hydrocarbons in olive oils on the Italian market. Food Addit Contam 8:363–369. doi:10.1080/02652039109373985

    Article  CAS  Google Scholar 

  • Moret S, Conte LS (2000) Polycyclic aromatic hydrocarbons in edible fats and oils: occurrence and analytical methods. J Chromatogr A 882:245–253. doi:10.1016/S0021-9673(00)00079-0

    Article  CAS  Google Scholar 

  • Nie J, Qian Y, Duan XL, Xu J, Zhang JL, Wang HM (2009) Health hazard of polycyclic aromatic hydrocarbons in food and its control measures. Environ. Sustain Dev 4:3–4 in Chinese

    Google Scholar 

  • Nisbet IC, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs. Regul Toxicol Pharmacol 16:290–300. doi:10.1016/0273-2300(92)90009-X

    Article  CAS  Google Scholar 

  • Orecchio S, Papuzza V (2009) Levels, fingerprint and daily intake of polycyclic aromatic hydrocarbons (PAHs) in bread baked using wood as fuel. J Hazard Mater 164:876–883. doi:10.1016/j.jhazmat.2008.08.083

    Article  CAS  Google Scholar 

  • Pandit GG, Srivastava PK, Rao AM (2001) Monitoring of indoor volatile organic compounds and polycyclic aromatic hydrocarbons arising from kerosene cooking fuel. Sci Total Environ 279:159–165

    Article  CAS  Google Scholar 

  • Perelló G, Martí-Cid R, Castell V, Llobet JM, Domingo JL (2009) Concentrations of polybrominated diphenyl ethers,hexachlorobenzene and polycyclic aromatic hydrocarbons in various foodstuffs before and after cooking. Food Chem Toxicol 47:709–715. doi:10.1016/j.fct.2008.12.030

    Article  Google Scholar 

  • Perugini M, Visciano P, Giammarino A, Manera M, Di Nardo W, Amorena M (2007) Polycyclic aromatic hydrocarbons in marine organisms from the Adriatic Sea, Italy. Chemosphere 66:1904–1910. doi:10.1016/j.chemosphere.2006.07.079

    Article  CAS  Google Scholar 

  • Reinik M, Tamme T, Roasto M, Juhkam K, Tenno T, Kiis A (2007) Polycyclic aromatic hydrocarbons (PAHs) in meat products and estimated PAH intake by children and the general population in Estonia. Food Addit Contam 24:429–437. doi:10.1080/02652030601182862

    Article  CAS  Google Scholar 

  • Rey-Salgueiro L, García-Falcón MS, Martínez-Carballo E, Simal-Gándara J (2008) Effects of toasting procedures on the levels of polycyclic aromatic hydrocarbons in toasted bread. Food Chem 108:607–615. doi:10.1016/j.foodchem.2007.11.026

    Article  CAS  Google Scholar 

  • Rey-Salgueiro L, Martínez-Carballo E, García-Falcón MS, González-Barreiro C, Simal-Gándara J (2009) Occurrence of polycyclic aromatic hydrocarbons and their hydroxylated metabolites in infant foods. Food Chem 115:814–819

    Article  CAS  Google Scholar 

  • Rojo Camargo MC, Toledo MCF (2003) Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control 14:49–53. doi:10.1016/S0956-7135(02)00052-X

    Article  CAS  Google Scholar 

  • Rose M, Holland J, Dowding A, Petch SR, White S, Fernandes A, Mortimer D (2015) Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food Chem Toxicol 78:1–9. doi:10.1016/j.fct.2014.12.018

    Article  CAS  Google Scholar 

  • Saito E, Tanaka N, Miyazaki A, Tsuzaki M (2014) Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking. Food Chem 153:285–291. doi:10.1016/j.foodchem.2013.12.055

    Article  CAS  Google Scholar 

  • Sharma RK, Chan WG, Seeman JI, Hajaligol MR (2003) Formation of low molecular weight heterocycles and polycyclic aromatic compounds (PACs) in the pyrolysis of α-amino acids. J Anal Appl Pyrolysis 66:97–121. doi:10.1016/S0165-2370(02)00108-0

    Article  CAS  Google Scholar 

  • Shen S, Cao X, Song Y, Liu Y, Sheng Z, Tan L (2008) The properties and damage of polycyclic aromatic hydrocarbons. Guizhou Chem Indust 33:61–62 in Chinese

    Google Scholar 

  • Shi LK, Liu YL, Wang YH, Zhang DD (2015) A study examining changes in polycyclic aromatic hydrocarbon (PAH) content of edible oils upon frying. Mod. Food Sci Technol 4:1–4 in Chinese

    Google Scholar 

  • Stołyhwo A, Sikorski ZE (2005) Polycyclic aromatic hydrocarbons in smoked fish—a critical review. Food Chem 91:303–311. doi:10.1016/j.foodchem.2004.06.012

    Article  Google Scholar 

  • Teixeira VH, Casal S, Oliveira MBPP (2007) PAHs content in sunflower, soybean and virgin olive oils: evaluation in commercial samples and during refining process. Food Chem 104:106–112. doi:10.1016/j.foodchem.2006.11.007

    Article  CAS  Google Scholar 

  • Tfouni SAV, Toledo MCF (2007) Determination of polycyclic aromatic hydrocarbons in cane sugar. Food Control 18:948–952. doi:10.1016/j.foodcont.2006.05.012

    Article  CAS  Google Scholar 

  • Tfouni SAV, Serrate CS, Leme FM, Camargo MCR, Teles CRA, Cipolli KMVAB, Furlani RPZ (2013) Polycyclic aromatic hydrocarbons in coffee brew: influence of roasting and brewing procedures in two Coffea cultivars. LWT Food Sci Technol 50:526–530. doi:10.1016/j.lwt.2012.08.015

    Article  CAS  Google Scholar 

  • Tiwari M, Sahu SK, Bhangare RC, Ajmal PY, Pandit GG (2013) Estimation of polycyclic aromatic hydrocarbons associated with size segregated combustion aerosols generated from household fuels. Microchem J 106:79–86

    Article  CAS  Google Scholar 

  • USEPA (2002) Polycyclic organic matter. Environmental Protection Agency, Washington, DC. Available at: http://www.epa.gov/ttn/atw/hlthef/polycycl.html

  • van Stijn F, Kerkhoff MA, Vandeginste BG (1996) Determination of polycyclic aromatic hydrocarbons in edible oils and fats by on-line donor-acceptor complex chromatography and high-performance liquid chromatography with fluorescence detection. J Chromatogr A 750:263–273. doi:10.1016/0021-9673(96)00284-1

    Article  Google Scholar 

  • Vieira MA, Maraschin M, Rovaris ÂA, Amboni RD, Pagliosa CM, Xavier JJ, Amante ER (2010) Occurrence of polycyclic aromatic hydrocarbons throughout the processing stages of erva-mate (Ilex paraguariensis. Food Addit Contam 27:776–782

    Article  CAS  Google Scholar 

  • Waqas M, Khan S, Chao C, Shamshad I, Qamar Z, Khan K (2014) Quantification of PAHs and health risk via ingestion of vegetable in Khyber Pakhtunkhwa Province, Pakistan. Sci Total Environ 497–498:448–458. doi:10.1016/j.scitotenv.2014.07.128

    Article  Google Scholar 

  • Wenzl T, Simon R, Anklam E, Kleiner J (2006) Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. Trends Anal Chem 25:716–725. doi:10.1016/j.trac.2006.05.010

    Article  CAS  Google Scholar 

  • Wu S, Yu W (2012) Liquid–liquid extraction of polycyclic aromatic hydrocarbons in four different edible oils from China. Food Chem 134:597–601. doi:10.1016/j.foodchem.2012.02.155

    Article  CAS  Google Scholar 

  • Xu NQ, Li XT, Chen N, Xu SH (2011) An investigation and analysis of the status quo of Chinese urban residents’ living consumption. Econ Res Guide 9:14–305 in Chinese

    Google Scholar 

  • Yao ZL, Li J, Wuh BB, Hao XW, Yin Y, Jiang X (2015) Characteristics of PAHs from deep-frying and frying cooking fumes. Environ Sci Pollut Res 20:16110–16120

    Article  Google Scholar 

  • Yoon E, Park K, Lee H, Yang J, Lee C (2007) Estimation of excess cancer risk on time–weighted lifetime average daily intake of PAHs from food ingestion. Hum Ecol Risk Assess 13:669–680. doi:10.1080/10807030701226871

    Article  CAS  Google Scholar 

  • Zhang XT, Liu YL, Wang YH (2012) Advance in polycyclic aromatic hydrocarbons in edible oils. China Oils Fats 37:2–3 in Chinese

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Special Funds of Beijing Advanced Innovation Center for Food Nutrition and Human Health and the Graduate Student Innovation Project of Beijing Technology and Business University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Yao.

Additional information

Responsible editor: Ester Heath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Yin, Y., Feng, S. et al. Characteristics of polycyclic aromatic hydrocarbons in food oils in Beijing catering services. Environ Sci Pollut Res 23, 24932–24942 (2016). https://doi.org/10.1007/s11356-016-7671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7671-4

Keywords

Navigation